


### Classic Surgical Technique





never stop moving™

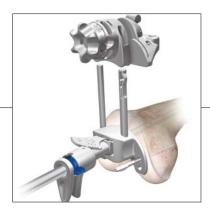
Contemporary total knee arthroplasty demands high performance instrumentation that provides enhanced efficiency, precision, and flexibility. Through a program of continuous development DePuy now offers a single system of High Performance instruments that supports your approach to knee replacement surgery.

This surgical technique provides instruction on the implantation of the Sigma® family of fixed bearing and rotating platform knees utilizing the Classic femoral preparation system.

There are several approach options available to the surgeon, the most common are; medial parapatellar, mini-midvastus and mini-subvastus.

# Contents

| Surgical Summary                                      | 2  |
|-------------------------------------------------------|----|
| ncision and Exposure                                  | 4  |
| Patella Resection                                     | 7  |
| Femoral Alignment                                     | 9  |
| Distal Femoral Resection                              | 12 |
| Fibial Jig Assembly                                   | 13 |
| Lower Leg Alignment                                   | 14 |
| Fibial Resection                                      | 16 |
| Extension Gap Assessment and Balancing                | 17 |
| Femoral Sizing                                        | 18 |
| Femoral Rotation                                      | 19 |
| Anterior Down/Posterior Up Sizing Guides              | 20 |
| Femoral Preparation - A/P and Chamfer Cuts            | 21 |
| Femoral Resection - Notch Cuts                        | 22 |
| Trial Components (For Fixed Bearing, see Appendix A)  | 23 |
| Fibial Preparation - M.B.T.                           | 26 |
| Final Patella Preparation                             | 28 |
| Cementing Technique                                   | 29 |
| Final Component Implantation                          | 30 |
| Closure                                               | 31 |
| Appendix A: Fixed Bearing Modular Tibial Preparation  | 32 |
| Appendix A: Fixed Bearing Standard Tibial Preparation | 35 |
| Appendix B: Tibial I.M. Jig Alignment                 | 36 |
| Appendix C: Spiked Uprod                              | 39 |
| Ordering Information                                  | 42 |


# Surgical Summary



Step 1: Incision and exposure



Step 2: Patellar resection



Step 3: Femoral alignment



Step 7: Soft tissue balancing



Step 8: Femoral sizing and rotation



Step 9: Femoral preparation



Step 13: Final patella preparation



Step 4: Distal femoral resection



Step 5: Lower leg alignment



Step 6: Tibial resection



Step 10: Femoral resection notch cuts



Step 11: Trial reduction



Step 12: Tibial preparation



Step 14: Final component implantation

### Incision and Exposure

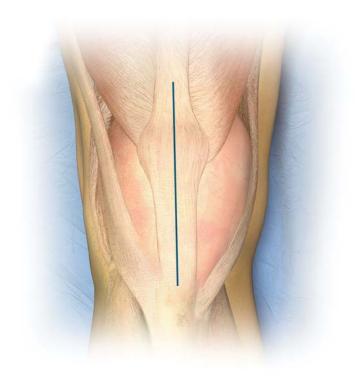



Figure 1

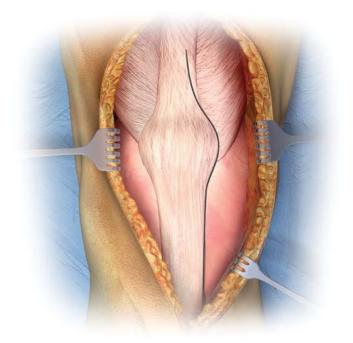



Figure 2

The Sigma® High Performance instrumentation is designed for use with and without Ci™ computer assisted surgery, for both open and minimal invasive approaches to the knee.

Make a straight midline skin incision starting from 2 to 4 cm above the patella, passing over the patella, and ending at the tibial tubercle (Figure 1).

There are three approach options available for the surgeon: medial parapatellar, mini-midvastus, and mini-subvastus.

For surgeons choosing the medial parapatellar (Figure 2):

Make a medial parapatellar incision through the retinaculum, the capsule and the synovium, with neutral alignment or with varus deformity. The medial parapatellar incision starts proximal (4 cm) to the patella, incising the rectus femoris tendon longitudinally, and continues distally around the medial aspect of the patella and ligamentum patella stopping just medial to the tibial tubercle (Figure 2). Following this incision, either evert or luxate the patella laterally to expose the entire tibio-femoral joint.

### Incision and Exposure

For surgeons choosing the mini midvastus option (Figure 3):

The midvastus approach starts 3-4 cm in the middle of the Vastus Medialis Obliquus (VMO), running distal and lateral to the muscle fibers towards the rectus femoris, splitting the VMO.

Continue the incision distally around the medial aspect of the patella and ligamentum patella stopping just medial to the tibial tubercle (Figure 3). Following this incision, luxate the patella laterally to expose the entire tibio-femoral joint.

For surgeons choosing the subvastus option:
The subvastus approach starts by lifting the VMO with a 90 degree stomp hook. A 3-4 cm incision is made in the capsule underneath the VMO, running horizontal from medial to lateral towards the mid portion of the patella. The incision continues distally around the medial aspect of the patella and ligamentum patella stopping just medial to the tibial tubercle (Figure 4). Following this incision, luxate the patella laterally to expose the entire tibiofemoral joint.

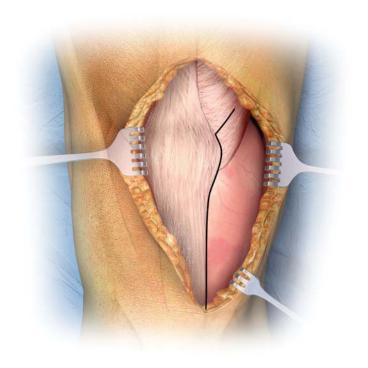



Figure 3

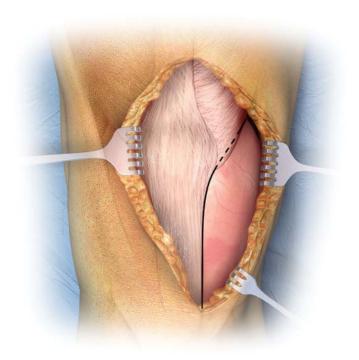



Figure 4

# Incision and Exposure



Figure 5

Excise hypertrophic synovium if present and a portion of the infrapatella fat pad to allow access to the medial, lateral and intercondylar spaces.

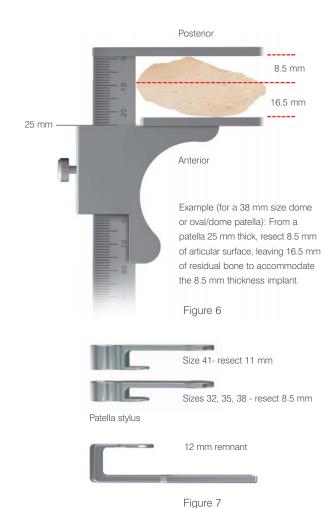
Remove all osteophytes at this stage as they can affect soft tissue balancing (Figure 5).

Note: Particular attention should be given to posterior osteophytes as they may affect flexion contracture or femoral rotation.

Evaluate the condition of the posterior cruciate ligament (PCL) to determine the appropriate Sigma component to use. Resect the PCL if required.

### Patella Resection

Resection and preparation of the patella can be performed sequentially or separately, as desired, and can be performed at any time during surgery.


Measure the thickness of the patella and calculate the level of bone resection (Figure 6). The thickness of the resurfaced patella should be the same as the natural patella. There should be equal amounts of bone remaining in the medial/lateral and superior/inferior portions of the patella.

Select a patella stylus that matches the thickness of the implant to be used. The minimum depth of the patella resection should be no less than 8.5 mm (Figure 7).

However, when the patella is small, a minimal residual thickness of 12 mm should be maintained to avoid fracture.

A 12 mm remnant stylus can be attached to the resection guide resting on the **anterior** surface of the patella, to avoid over resection (Figure 8).

Place the leg in extension and position the patella resection guide with the sizing stylus against the **posterior** cortex of the patella with the serrated jaws at the superior and inferior margins of the articular surface. Close the jaws to firmly engage the patella (Figure 9).



. iga.o .



Figure 8 Figure 9

### Patella Resection

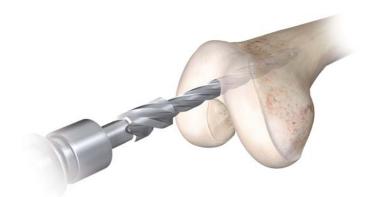


Tilt the patella to an angle of 40 to 60 degrees (Figure 10).

Figure 10



Figure 11


Remove the stylus and perform the resection using an oscillating saw through the saw capture and flush to the cutting surface (Figure 11).

A patella wafer can be hand placed on the resected surface if required to protect the patella bone bed.

# Femoral Alignment

Enter the medullary canal at the midline of the trochlea, 7 mm to 10 mm anterior to the origin of the PCL. Drill to a depth of approximately 5 cm to 7 cm. Take care to avoid the cortices (Figure 12).

Use the step part of the drill to increase the diameter of the hole, if required.



Note: Correct location of the medullary canal is critical to avoid malposition of the femoral component.

Figure 12

Position the drill anteromedially to allow unobstructed passage of the I.M. rod in the femoral canal (Figure 13).

Attach the T-handle to the I.M. rod and slowly introduce the rod into the medullary canal, to the level of the isthmus (Figure 14).

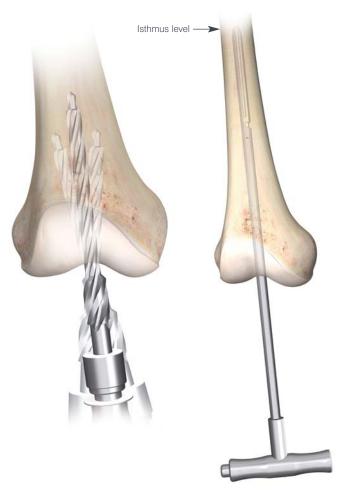



Figure 13 Figure 14

### Femoral Alignment



Figure 15

Note: Although this manual illustrates the Femur First technique, the Sigma High Performance technique can also be performed using the Tibia First approach.

Use preoperative radiographs to define the angle between the femoral, anatomical and mechanical axis. Set the valgus angle (left or right - 0 degrees to 9 degrees) on the femoral alignment guide by compressing the two triggers and lock in place by rotating the blue locking lever clockwise (Figure 15).

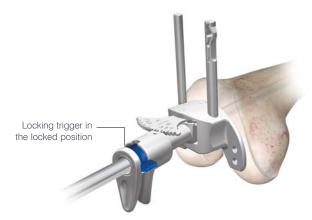
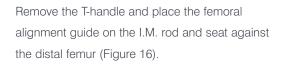




Figure 16



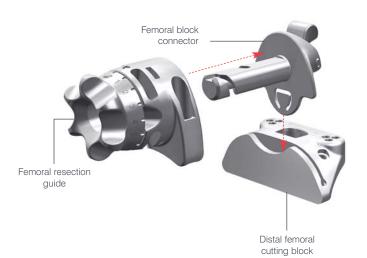
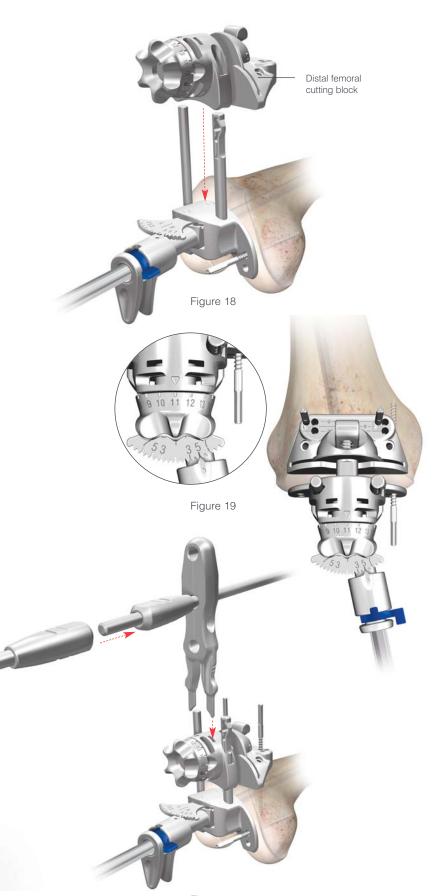



Figure 17

Rotate the knob counter-clockwise until the arrow is pointing to the padlock symbol. Slide the femoral cutting block in the femoral block connector. Rotate the knob clockwise to set the desired resection level. Every click moves the femoral cutting block 1 mm proximal or distal and represents a slotted resection. An open resection will resect 4 mm less distal femur, so when an open resection is desired, the dial should be set to take an increased 4 mm of femur. Place the block connector in the femoral resection guide so that the tang on the connector slides in to the cutting slot on the cutting block. The trigger should engage in the hole behind the slot (Figure 17).

### Femoral Alignment

Position the resection guide over the two legs of the distal femoral alignment guide until the distal cutting block touches the anterior femur (Figure 18).


#### Optional

Adjust the internal/external rotation of the alignment guide with reference to the trochlear groove. When rotation is correct, secure the alignment guide by inserting one threaded pin through the medial hole.

Adjust the medial-lateral placement of the resection block as desired and rotate until firmly seated on the anterior condyles.

Secure the cutting block to the femur with two threaded pins through the holes marked with a square. Make sure the pins are engaging the posterior condyles. This will allow a +2 or -2 mm adjustment to be made (Figure 19).

Optional: The alignment tower may be introduced at this point into the two slots on the distal resection device. With the alignment tower in place, connect two alignment rods, creating a line that runs from the center of the hip to the ankle. This may be helpful in assessing the mechanical axis (Figure 20).



### **Distal Femoral Resection**

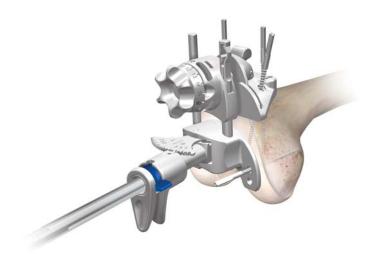
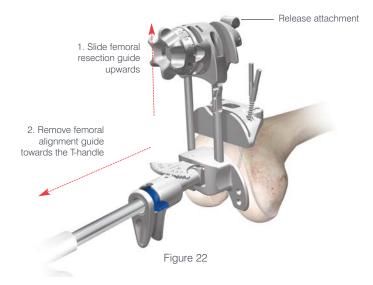




Figure 21



After the correct amount of resection is set, add a convergent pin through the medial hole in the block to aid stability (Figure 21).

#### Removal of the Femoral Alignment Guide

First attach the T-handle to the I.M. guide. Then unlock the cutting block from the block connector, using your thumb and index finger to release the attachment. Slide the femoral resection guide upwards on the alignment guide legs until the block connector disengages the cutting block and in one motion remove the femoral alignment guide by pulling the instruments distally in the direction of the T-handle (Figure 22).



Figure 23

Perform the distal femoral resection (Figure 23).
Resect at least 9 mm from the most prominent condyle. After performing the distal resection, use the power pin driver to remove the threaded pins.

Optional: If drill pins or Steinmann pins were used to fixate the cutting block, the pin puller can be used to extract the pins.

# Tibial Jig Assembly

The tibia can now be resected to create more room in the joint space.

Assemble the appropriate 0-3 degree, left/right or symmetrical cutting block to the tibial jig uprod. Slide the tibial jig uprod into the ankle clamp assembly (Figure 24).

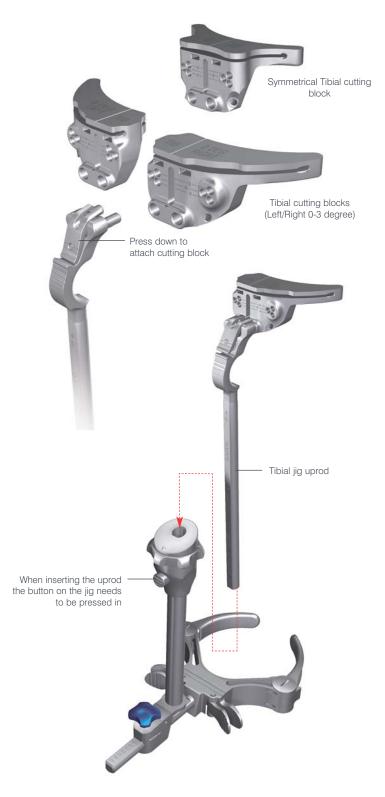



Figure 24

### Lower Leg Alignment



Figure 25

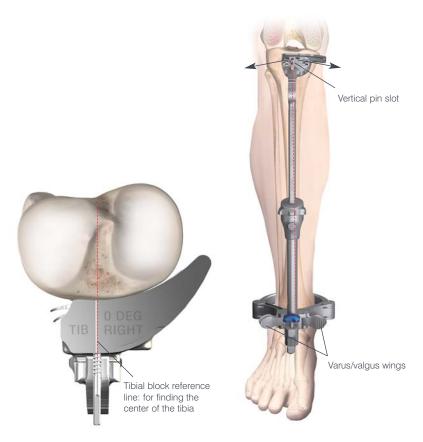



Figure 26 Figure 27

Place the knee in 90 degrees of flexion with the tibia translated anteriorly and stabilized. Place the ankle clamp proximal to the malleoli (Figure 24). Align the proximal central marking on the tibia cutting block with the medial one third of the tibial tubercle to set rotation. To provide stability, insert a central pin through the vertical slot in the cutting block to aid stability (Figure 25). Push the quick release button to set the approximate resection level.

#### Varus/Valgus

Align the tibial jig ankle clamp parallel to the transmalleolar axis to establish rotational alignment. The midline of the tibia is approximately 3 mm medial to the transaxial midline (Figure 26). Translate the lower assembly medially (usually moving it one vertical mark in from the mark furthest out). Each marking is 2.5 mm apart. There are also vertical scribe marks for reference aligning to the middle of the talus (Figure 27).

#### Slope

The tibial jig uprod and ankle clamp are designed to prevent an adverse anterior slope. On an average size tibia this guide gives approximately a 0 degree tibial slope when the slope adjustment is translated anteriorly until it hits the stop. In some cases, a slight amount of slope will remain (1-2 degrees) (Figure 27).

### Lower Leg Alignment

Increase the angle of the tibial slope to greater than 0 degrees if the patient has a greater natural slope (Figure 28). First, unlock the slope adjustment lock and then translate the tibial slope adjuster anteriorly until the desired angle is reached. For a Cruciate Substituting (CS) design, a 0 degree posterior slope is recommended. For a Cruciate Retaining (CR) design, a 3 degree posterior slope is recommended.

As each patient's anatomy varies, the EM tibial uprod can be used for both smaller and larger patients. The length of the tibia influences the amount of slope when translating the adapter anteriorly. The 0 degree default position can be overridden by moving the slope adjustment closer to the ankle.

On the uprod 5, 6 and 7 zones are present, which correspond to the length of the tibia. These markings can by used to fine tune the amount of slope. When the uprod shows a larger zone (7) marking, this indicates that when the lower assembly is translated 7 mm anterior, it will give an additional 1 degree of posterior slope (Figure 29).

#### Height

When measuring from the less damaged side of the tibial plateau set the stylus to 8 mm or 10 mm. If the stylus is placed on the more damaged side of the tibial plateau, set the stylus to 0 mm or 2 mm. Adjustment of resection height on the stylus should be done outside the joint space before locating the stylus in the cutting block.

If planning to resect through the slot, position the foot of the tibial stylus marked "slotted" into the slot of the tibial cutting block (Figure 30). If planning to resect on top of the cutting block, place the foot marked "non-slotted" into the cutting slot.

The final resection level can be dialed in by rotating the fine-tune mechanism clockwise (upward adjustment) or counterclockwise (downward adjustment). Care should be taken with severe valgus deformity, not to over resect the tibia.

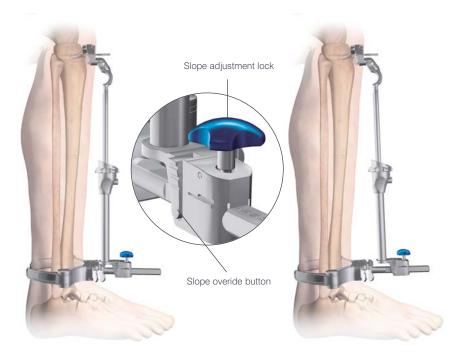



Figure 28 Figure 29

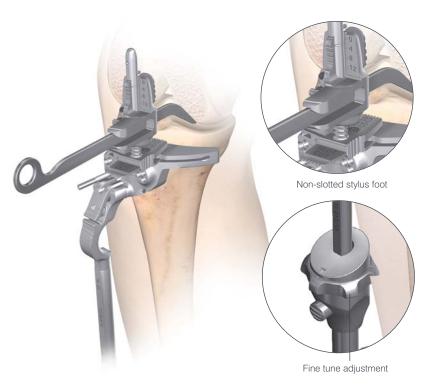
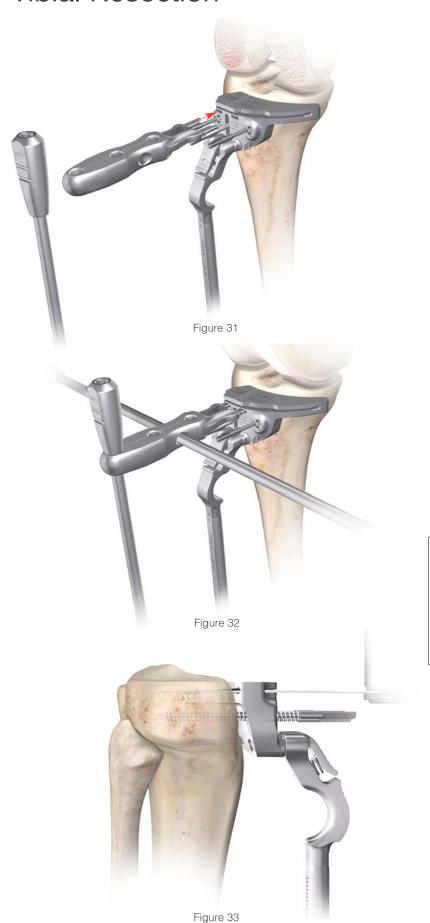




Figure 30

### **Tibial Resection**



Optional: The alignment tower may be introduced at this point into the two slots on the tibial cutting block. With the alignment tower in place, drop an alignment rod running from the tibial plateau to the ankle. This may be helpful in assessing alignment (Figure 31).

Optional: In addition, a second alignment rod may be placed into the tower in the M/L plane (Figure 32). This will assist in making sure the tibia is not cut in varus or valgus.

After the height has been set, pin the block through the 0 mm set of holes (the stylus may need to be removed for access). +/-2 mm pinholes are available on the resection blocks to further adjust the resection level where needed.

The block can be securely fixed with a convergent pin (Figure 33).

Subvastus tip: Because the patella has not been everted, the patellar tendon is often more prominent anteriorly than with a standard arthrotomy and thus at risk for iatrogenic damage with the saw blade during tibial preparation.

### Extension Gap Assessment and Balancing

Place the knee in full extension and apply lamina spreaders medially and laterally. The extension gap must be rectangular in configuration with the leg in full extension. If the gap is not rectangular, the extension gap is not balanced and appropriate soft tissue balancing must be performed (Figure 34).

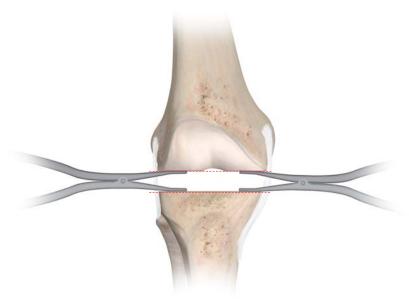
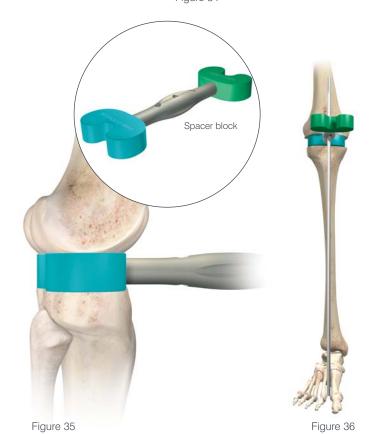




Figure 34

A set of specific fixed bearing and mobile bearing spacer blocks are available. Every spacer block has two ends, one for measuring the extension gap and one for the flexion gap. The extension gap side of the spacer block can be used to determine the appropriate thickness of the tibial insert and to validate the soft tissue balance (Figure 35).

Introduce the alignment rod through the spacer block. This may be helpful in assessing alignment (Figure 36).



17

### Femoral Sizing



Figure 37




Figure 38

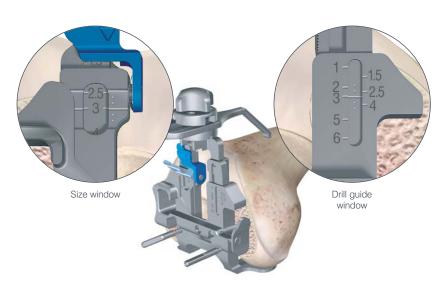
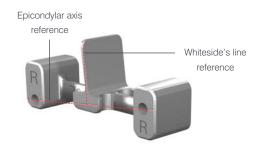



Figure 39

The Classic sizing guide is available in two formats: anterior down and posterior up.

Place the Classic sizing guide against the resected distal surface of the femur, with the posterior condyles resting on the posterior plate of the guide. Secure with threaded headed pins (optional) (Figure 37).

Place the sizing guide stylus on the anterior femur with the tip positioned at the intended exit point on the anterior cortex to avoid any potential notching of the femur. A scale on the surface of the stylus indicates the exit point on the anterior cortex for each size of femur. The scale is read from the distal side of the lock knob (Figure 38).


The size indicated on the stylus should approximately correspond to the size shown in the sizing window. Tighten the locking lever and read the size from the left sizing window.

Set the drill guide scale on the right to match the size indicated on the sizing window, by pushing the button at the side and shifting the slider up or down (Figure 39).

### Femoral Rotation

Select the appropriate 0, 3, 5 or 7-degree left/right rotation guide, flip the guide to LEFT or RIGHT, and attach to the posterior up or anterior down converter (Figure 40). Choose the degree of external rotation setting that is parallel to the epi-condylar axis and perpendicular to Whiteside's line.

When assembling the rotation guide, operating on a left leg, the letter "L" should be facing outwards after assembly, if operating of a right leg, the letter "R" should be visible.



7 degrees right rotation guide Figure 40

Drill two pinholes through the medial and lateral rotation guide to set 0, 3, 5 or 7 degrees of external femoral rotation (Figure 41).

The Classic femoral sizer is available in two formats: anterior down and posterior up. The functionality of these sizing guides are equal when measuring an implant size that is within the Sigma product range (1.5, 2, 2.5, 3, 4, 5, 6).

The sizing guides differ in the way they function for in-between sizes.

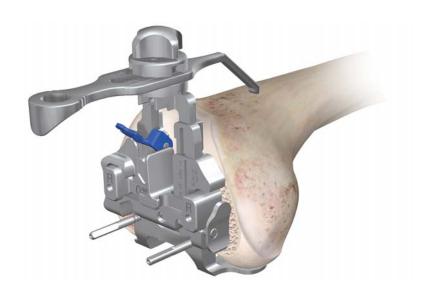



Figure 41

### Anterior Down/Posterior Up Sizing Guides

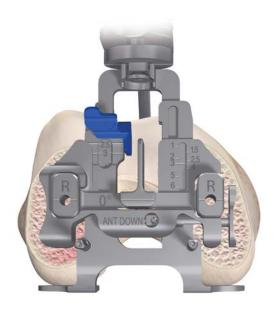



Figure 42

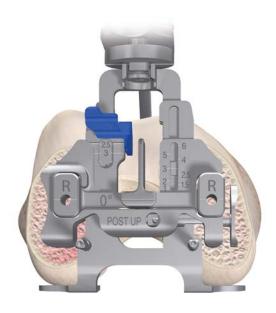



Figure 43

#### Anterior Down

The anterior down sizing guide will position the Sigma or RP-F A/P chamfer block such that the anterior flange of the prosthesis will fit flush with the anterior cortex of the femur. When the sizing guide indicates a size within the Sigma product range, 8 mm will be resected from the posterior condyles, corresponding to the posterior condyle thickness of the prosthesis (Figure 42).

Where the femur measures in-between sizes (for example if the sizing indicator reads 3.5) a decision can be made to 'down-size' to a size 3. An additional 2 mm of bone (10 mm total) will be resected from the posterior condyles, opening up the flexion gap by 2 mm. When the decision is made to 'up-size' to a size 4, 2 mm less bone (6 mm total) is resected from the posterior condyles (closing the flexion gap by 2 mm). It is possible to share the compromise of in between sizes by sliding the drill guide scale anteriorly or posteriorly to shift the implant accordingly.

#### Posterior Up

The posterior up sizing guide will position the Sigma or RP-F Classic A/P chamfer block such that 8 mm of bone will be resected from the posterior condyles, corresponding to the posterior condyle thickness of the prosthesis (Figure 43).

Where the femur measures in-between sizes, for example, the sizing indicator reads 3.5, a decision needs to be made to 'up-size' or 'down-size' the femoral component. When the decision is made to 'down-size' to a size 3, an additional 2 mm of bone will be resected from the anterior cortex. This could result in notching of the femur. When the decision is made to 'up-size' to a size 4, less bone is resected from the anterior cortex. This could result in 'overstuffing' of the patellofemoral joint.

### Femoral Preparation - A/P and Chamfer Cuts

All existing A/P chamfer blocks that are available within Specialist 2 can be used to make the femoral resections (Figure 44).

Position the appropriate size Sigma or RP-F A/P chamfer block in the pre-drilled medial and lateral holes. The Sigma RP-F Classic A/P chamfer block can be distinguished by the RP-F engraving above the left side of the posterior cut. Furthermore, there are also engraved etchings above the posterior cut and another RP-F description written on top of the block to further differentiate the high flex block.

Secure and stabilize the Sigma or RP-F classic A/P chamfer block by drilling a threaded headed pin through the central pinhole. Alternatively medial and lateral pins can be placed. Place retractors to protect the MCL medially and the popliteal tendon laterally.

At this point use the reference guide in the anterior slot to confirm that the anterior cut will not notch. After ensuring the femoral chamfer block is securely fixed and the anterior cut is acceptable, make the four resections in the following order: anterior, posterior, anterior chamfer and posterior chamfer cuts (Figure 45).

Protect the skin with retractors when performing the anterior chamfer cuts.

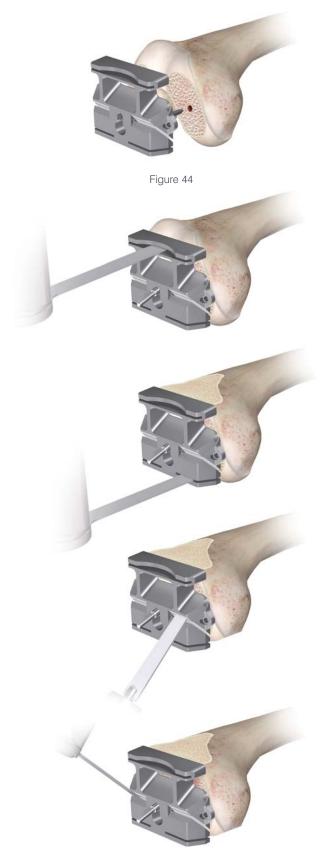



Figure 45

### Femoral Resection - Notch Cuts



Figure 46



Figure 47

When using a stabilized Sigma or Sigma RP-F component, select and attach the appropriate femoral notch guide. The Sigma RP-F and standard Sigma notch guides look very similar. Care should be taken not to confuse the blocks as this will result in under-or-over resection of the box.

The Sigma RP-F guide can be identified through the letters "RP-F" on the anterior face, and a series of grooves along the notch distal anterior corner.

Position the notch guide on the resected anterior and distal surfaces of the femur. Pin the block in place through the fixation pin holes with at least three pins before any bone cuts are made (Figures 46 and 47).

### Trial Components (For Fixed Bearing, see Appendix A)

Note: Either M.B.T. or Fixed Bearing tibial components can be trialed prior to performing the tibial preparation step.

#### Femoral Trial

Attach the slap hammer or universal handle to the femoral inserter/extractor. Position the appropriately sized femoral trial on the inserter by depressing the two triggers to separate the arms and push the trial against the conforming poly surface. Release the triggers so that the arms engage in the slots on the femur, and rotate the handle clockwise to lock. Position the trial onto the femur, impacting, as necessary. To detach the inserter from the femur, rotate the handle counterclockwise and push the two triggers with thumb and index finger. Position the femoral trial onto the femur (Figure 48).

#### Tibial Trial

Place the appropriate sized M.B.T. tray trial onto the resected tibial surface. Position the evaluation bullet into the cut-out of the M.B.T. tray trial (Figure 49).

There are two options available to assess the knee during trial reduction. One or both may be used.

### 1) Trial reduction with the M.B.T. tray trial free

This option is performed using a non-spiked M.B.T. evaluation bullet. It is useful when the tibial tray component is smaller than the femoral size.

Note: Mobile bearing tibial insert size MUST match femoral component size.

With equivalent sizes, the bearing rotation allowance is 8 degrees for Sigma and 20 degrees for Sigma RP-F. For a tibial tray one size smaller than the femoral component, this bearing rotation allowance reduces to 5 degrees. In this situation, finding the neutral position with respect to the femur is therefore more important in order to prevent bearing overhang and soft tissue impingement. Position the evaluation bullet into the cut-out of the M.B.T. tray trial.



Figure 48



Figure 49

### Trial Components (For Fixed Bearing, see Appendix A)



Figure 50

# 2) Trial reduction with M.B.T. tray trial fixed in place This trial reduction can be done instead or in addition to the one described before.

Place the appropriately sized M.B.T. tray trial onto the resected tibial surface (Figure 50).



Figure 51

Assess the position of the tray to achieve maximal tibial coverage (align the tibial tray handle with the electrocautery marks if procedure described in tibial trial 1 has been followed). The rotation of the M.B.T. tray trial is usually centered on the junction between the medial and central one-third of the tibial tubercle. Secure the keel punch impactor to the spiked evaluation bullet and position into the cut-out of the M.B.T. tray trial. Tap down lightly to secure the tray to the proximal tibia (Figure 51).

### Trial Components (For Fixed Bearing, see Appendix A)

Select the tibial insert trial that matches the chosen femoral size and style, curved or stabilized, and insert it onto the M.B.T. tray trial (Figure 52). Carefully remove the tibial tray handle and, with the trial prosthesis in place, extend the knee carefully, noting the anterior/posterior stability, medial/lateral stability and overall alignment in the A/P and M/L plane. If there is any indication of instability, substitute a tibial insert trial with the next greater thickness and repeat the reduction.



Figure 52

Select the tibial insert trial that gives the greatest stability in flexion and extension while still allowing full extension (Figure 53).

Adjust rotational alignment of the M.B.T. tray trial with the knee in full extension, using the tibial tray handle to rotate the tray and trial insert into congruency with the femoral trial. The rotation of the M.B.T. tray trial is usually centered on the junction between the medial and central one-third of the tibial tubercle. Overall alignment can be confirmed using the two-part alignment rod, attaching it to the tibial alignment handle (Figure 54). The appropriate position is marked with electrocautery on the anterior tibial cortex. Fully flex the knee, and remove the trial components.

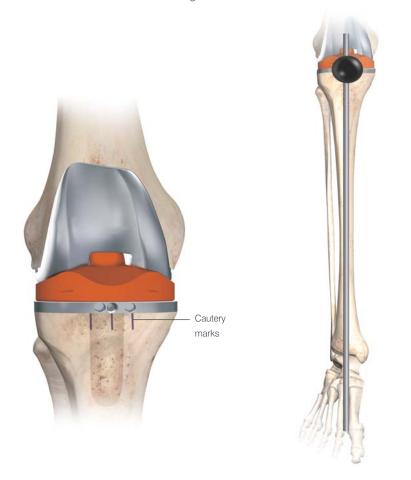



Figure 53 Figure 54

### Tibial Preparation - M.B.T.

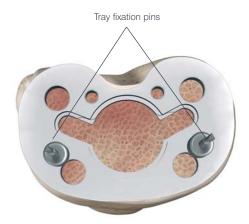
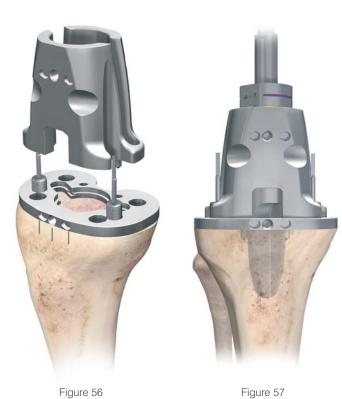




Figure 55



**Tibial Preparation** 

Align the tibial trial to fit with the tibia for maximum coverage or, if electrocautery marks are present, use these for alignment. Pin the trial with two pins. The tray trial allows for standard and M.B.T. keeled (Figure 55). Attach the M.B.T. drill tower to the tray trial. Control the tibial reaming depth by inserting the reamer to the appropriate colored line (Figures 56 and 57). An optional Modular Drill Stop is available to provide a hard stop when reaming. See table for appropriate size.

| Line Color |
|------------|
| Green      |
| Yellow     |
| Blue       |
|            |

Note: For cemented preparation, select the "Cemented" instruments, and for non-cemented or line-to-line preparation, select the "Non-Cemented" tibial instruments. The Cemented instruments will prepare for a 1 mm cement mantle around the periphery of the implant.

# Tibial Preparation - M.B.T.

#### Keeled Tray Option

If a keeled M.B.T. tray is to be employed and the bone of the medial or lateral plateau is sclerotic, it is helpful to initially prepare the keel slot with an oscillating saw or high speed burr. Assemble the M.B.T. keel punch impactor to the appropriately-sized M.B.T. keel punch by pressing the side button and aligning the vertical marks on both impactor and keel punch (Figure 58). Insert assembly into the M.B.T. Drill Tower, taking care to avoid malrotation. Impact the assembly into the cancellous bone until the shoulder of the keel punch impactor is in even contact with the M.B.T. Drill Tower (Figure 59).

#### Non-Keeled Tray Option

For a non-keeled tray option, attach the M.B.T. punch and follow the same routine (Figure 60).

#### Final Trialing Option

A secondary and final trialing step can be performed after tibial preparation. Remove the keel punch impactor from the keel punch by pressing the side button and remove the drill tower as well. Place the trial femoral component on the distal femur. Place the appropriate tibial insert trial onto the tray trial and repeat previous trial evaluation.



Figure 58 Figure 59



Figure 60

### Final Patella Preparation

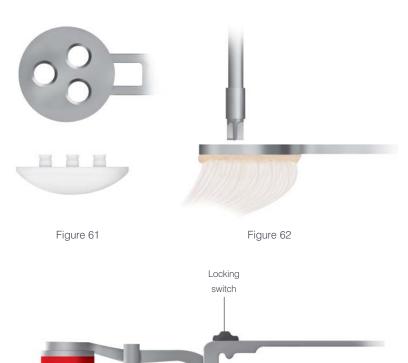



Figure 63



Select a template that most adequately covers the resected surface without overhang (Figure 61). If used, remove the patella wafer from the patella. Position the template handle on the medial side of the everted patella. Firmly engage the template to the resected surface and drill the holes with the appropriate drill bit (Figure 62).

Cement the patellar implant. Thoroughly cleanse the cut surface with pulsatile lavage. Apply cement to the surface and insert the component. The patellar clamp is designed to fully seat and stabilize the implant as the cement polymerizes. Center the silicon O-ring over the articular surface of the implant and the metal backing plate against the anterior cortex, avoiding skin entrapment. When snug, close the handles and hold by the ratchet until polymerization is complete. Remove all extruded cement with a curette. Release the clamp by unlocking the locking switch and squeezing the handle together (Figure 63).

Reduce the patella and evaluate the patella implant. Unrestricted range of motion, free bearing movement and proper patellar tracking should be evident (Figure 64).

# Cementing Technique

Prepare the sclerotic bone to ensure a continuous cement mantle with good cement interdigitation. This can be done by drilling holes and cleansing the bone by pulsatile lavage (Figure 65). Any residual small cavity bone defects should be packed with cancellous autograft, allograft or synthetic bone substitutes such as Conduit™ TCP.

Note: Blood lamination can reduce the mechanical stability of the cement, therefore it is vital to choose a cement which reaches its working phase early.

Whether mixed by the SmartMix<sup>™</sup> Vacuum Mixing Bowl or the SmartMix<sup>™</sup> Cemvac<sup>®</sup> Vacuum Mixing System, SmartSet<sup>®</sup> GHV Bone Cement offers convenient handling characteristics for the knee cementation process.

A thick layer of cement can be placed either on the bone (Figure 66) or on the implant itself.

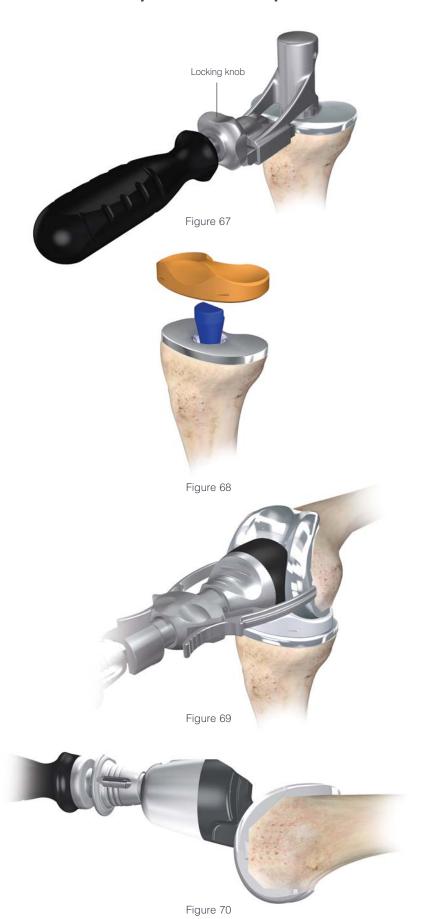



Figure 65



Figure 66

### Final Component Implantation



#### Tibial Implantation

Attach the M.B.T. tibial impactor by inserting the plastic cone into the implant and tighten by rotating the lock knob clockwise. Carefully insert the tibial tray avoiding malrotation (Figure 67). When fully inserted, several mallet blows may be delivered to the top of the tray inserter. Remove all extruded cement using a curette.

Optional: To perform a trial reduction with an insert trial, place the M.B.T. Trial Plateau Post into the tibial tray component and place the insert trial over this post and proceed with the trial reduction (Figure 68).

#### Polyethylene Implantation

Remove loose fragments or particulates from the permanent tibial tray. The appropriate permanent tibial insert can be inserted.

#### Femoral Implantation

Hyperflex the femur and sublux the tibia forward. Attach the slap hammer or universal handle to the femoral inserter/extractor. Position the appropriately sized femoral component on the inserter/extractor by depressing the two triggers to separate the arms and push the femoral component against the conforming poly. Release the triggers so that the arms engage in the slots on the femoral component and rotate the handle clockwise to lock (Figure 69).

Extend the knee to approximately 90 degrees for final impaction. Release the inserter/extractor by rotating the handle counterclockwise and push the two triggers with thumb and index finger. For final femur impaction use the femoral notch impactor to seat the femur component. In Sigma CS and Sigma RP-F (not Sigma CR) cases the impactor can be used in the notch to prevent adverse flexion positioning (Figure 70). Clear any extruded cement using a curette.

### Closure



Figure 71

Release the tourniquet and control bleeding by electrocautery. Place a closed-wound suction drain in the suprapatellar pouch and bring out through the lateral retinaculum. Reapproximate the fat pad, quadriceps mechanism, patella tendon and medial retinaculum with interrupted sutures.

Fully rotate the knee from full extension to full flexion to confirm patellar tracking and the integrity of the capsular closing (Figure 71). Note the final flexion against gravity for post-operative rehabilitation. Reapproximate subcutaneous tissue and close the skin with sutures or staple.

## Appendix A: Fixed Bearing Modular Tibial Preparation



Figure 72



Figure 73

#### Femoral Trial

Attach the slap hammer or universal handle to the femoral inserter/extractor. Position the appropriately sized femoral trial on the inserter by depressing the two triggers to separate the arms and push the trial against the conforming poly surface. Release the triggers so that the arms engage in the slots on the femur, and rotate the handle clockwise to lock. Position the trial onto the femur, impacting as necessary. To detach the inserter from the femur, rotate the handle counterclockwise and push the two triggers with thumb and index finger. Position the femoral trial onto the femur (Figure 72).

There are two options available to assess the knee during trial reduction. One or both may be used.

# 1. Trial reduction with the fixed bearing tray trial free to rotate.

This option is useful when allowing normal internal/ external extension of the tibial components during flexion/extension to dictate optimal placement of the tibial tray.

Select the trial bearing size determined during implant planning and insert onto the tray trial. Place the knee in approximately 90 to 100 degrees of flexion. With the knee in full flexion and the tibia subluxed anteriorly, attach the alignment handle to the tray trial by retracting the lever. Position the tray trial on the resected tibial surface, taking care to maximize the coverage of the tray trial on the proximal tibia (Figure 73).

### Appendix A: Fixed Bearing Modular Tibial Preparation

With the trial prostheses in place, the knee is carefully and fully extended, noting medial and lateral stability and overall alignment in the A/P and M/L plane. Where there is any indication of instability substitute the next greater size tibial insert and repeat reduction. Select the insert that gives the greatest stability in flexion and extension and allows full extension. Where there is a tendency for lateral subluxation or patellar tilt in the absence of medial patellar influence (thumb pressure), lateral retinacular release is indicated.

Adjust rotational alignment of the tibial tray with the knee in full extension, using the alignment handle to rotate the tray and trial insert into congruency with the femoral trial. The appropriate position is marked with electrocautery on the anterior tibial cortex. (Figures 74 and 75).

# 2. Trial reduction with the fixed bearing tray trial fixed in place.

Assess the position of the tray to achieve maximal tibial coverage (align the tibial tray handle with the electrocautery marks, if procedure described in 1 has been followed). The rotation of the tray trial is usually centered on the junction between the medial and central one-third of the tibial tubercle. Secure the fixed bearing keel punch impactor to the evaluation bullet and position into the cut-out of the tray trial. Tap down lightly to secure the tray to the proximal tibia (Figure 76).

Carefully remove the tibial tray handle and repeat the trial reduction step from Step 1.

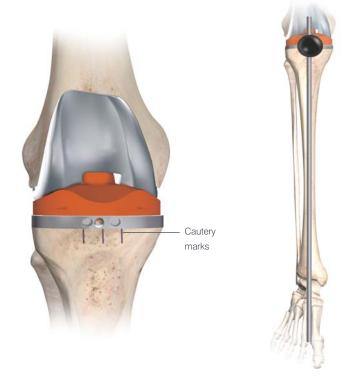



Figure 74 Figure 75



Figure 76

# Appendix A: Fixed Bearing Modular Tibial Preparation



Figure 77



Figure 78

Figure 79

#### Sigma Modular & UHMWPE Tray:

Select the appropriate fixed bearing drill tower, drill bushing, drill and modular keel punch system. Pin the trial with two pins. Remove the alignment handle from the tray trial and assemble the fixed bearing drill tower onto the tray trial (Figure 77).

Fully advance the matching drill through the drill tower into the cancellous bone (Figure 78) to the appropriate line shown in Table below.

| Tray Size | Line Color |
|-----------|------------|
| 1.5-3     | Green      |
| 4-5       | Yellow     |
| 6         | Purple     |

Note: For cemented preparation, select the "Cemented" instruments, and for non-cemented or

line-to-line preparation, select the "Non-Cemented"

tibial instruments. The Cemented instruments will prepare for a 1 mm cement mantle around the periphery of the implant.

Insert the fixed bearing keel punch impactor and keel punch through the drill tower and impact until the shoulder of the punch is in contact with the guide (Figure 79). Remove the keel punch impactor by pressing the side button taking care that the punch configuration is preserved.

# Appendix A: Fixed Bearing Standard Tibial Preparation

## Sigma Cruciform Keel Tray:

Pin the trial with two pins. Remove the alignment handle from the tray trial and assemble the appropriately sized cruciform keel punch guide to the tray trial (Figure 80).



Figure 80

For cemented preparation, sequentially prepare the tibia starting with the standard punch, followed by the cemented punch. For non-cemented preparation, use the standard punch only (Figure 81).

Assemble an appropriately sized standard or cemented keel punch onto the fixed bearing impactor handle. Insert the punch through the guide and impact until the shoulder of the punch is in contact with the guide. Free the stem punch, taking care that the punch configuration is preserved.



Figure 81

# Appendix B: Tibial I.M. Jig Alignment



The entry point for the intramedullary alignment rod is a critical starting point for accurate alignment of the intramedullary alignment system.

In most cases, this point will be centered on the tibial spine in both medial/lateral and anterior/ posterior aspect. In some cases, it may be slightly eccentric.

Flex the knee maximally, insert the tibial retractor over the posterior cruciate ligament and the sublux tibia anteriorly. All soft tissue is cleared from the intercondylar area. Resect the tibial spine to the highest level of the least affected tibial condyle.

Position the correct size fixed bearing or M.B.T. tray trial on the proximal tibia to aid in establishing a drill point. Drill a hole through the tray trial to open the tibia intramedullary canal with the I.M. step drill (Figure 82). Take care not to use the step portion of the drill. Using the step portion of the drill will create a large diameter hole in the tibia, which in turn creates toggle when using the IM tibial jig.

The intramedullary rod is passed down through the medullary canal until the isthmus is firmly engaged (Figure 83).

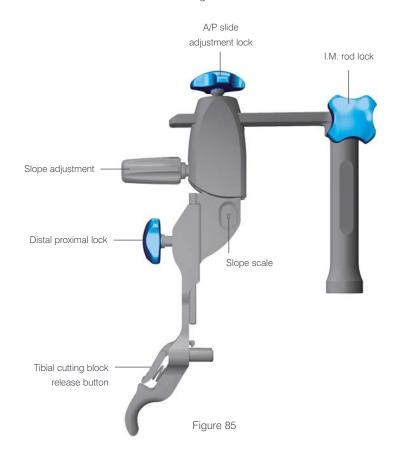
Figure 83

# Appendix B: Tibial I.M. Jig Alignment

Remove the handle and place the I.M. rotation guide over the I.M. rod to define the correct rotational tibia axis, referring to the condylar axis, medial 1/3 of the tibia tubercle and the center of the ankle (Figure 84).

The angle can also be checked relative to the posterior condylar axis by moving the slider forward and rotating it until it is aligned with the posterior condyles. The marks on the rotation guide are in 2 degree increments and give an indication of the angle between the posterior condylar axis and the chosen rotation.

The rotation can then be marked through the slot on the rotation guide. The rotation guide can then be removed. After the correct rotation has been marked, slide the I.M. tibial jig over the I.M. rod and rotate the I.M. jig until the rotation line on the jig lines up with the line previously marked using the rotation guide.


Assemble the appropriate 3 degree Sigma HP handed (left/right) or symmetrical tibia cutting block to the HP I.M. tibial jig in line with the marked rotation (Figure 85).

A 3-degree cutting block is recommended to compensate for the anterior angled I.M. rod position in the I.M. canal. This will prevent an adverse anterior slope position. This results in an overall 0 degree position, which is recommended for the Sigma Cruciate Substituting components. Additional posterior slope can be added through the slope adjustment knob, when using Sigma cruciate retaining components.

Note: The number in the window indicates the amount of ADDITIONAL SLOPE that has been added.



Figure 84



# Appendix B: Tibial I.M. Jig Alignment





Slide the appropriate fixed or adjustable stylus in the HP tibial cutting block slot. When measuring from the less damaged side of the tibia plateau set the stylus to 8 mm or 10 mm. If the stylus is placed on the more damaged side of the tibia plateau, set the stylus to 0 mm or 2 mm (Figure 86).

Slide the total construct as close as possible towards the proximal tibia and lock this position.

Adjust the correct degree of slope by rotating the slope adjustment screw. For Sigma Cruciate Retaining components, a 3 degree slope is recommended. For Sigma Cruciate Substituting components a 0 degree slope is recommended as previously described. Ensure that the slope scale reads zero.

Obtain the correct block height by unlocking the distal proximal lock and lowering the bottom half of the block until the stylus is resting on the desired part of the tibia. Lock the device, by turning the distal proximal locking screw, when the correct position has been reached.

After the height has been set, insert two pins through the 0 mm set of holes in the block (the stylus may need to be removed for access). The block can be securely fixed with one extra convergent pin.

+ and -2 mm pinholes are available on the cutting blocks to further adjust the resection level where needed.

Check the position of the resection block with an external alignment guide before making any cut.

Unlock the intramedullary alignment device from the cutting block and remove the I.M. rod (Figure 87).

# Appendix C: Spiked Uprod

Assemble the appropriate 0-3 degree, left/right or symmetrical cutting block to the spiked uprod. Slide the spiked uprod into the ankle clamp assembly.

Place the knee in 90 degrees of flexion with the tibia translated anteriorly and stabilized. Place the ankle clamp proximal to the malleoli and insert the larger of the two proximal spikes in the center of the tibial eminence to stabilize the EM alignment device. Loosen the A/P locking knob and position the cutting block roughly against the proximal tibia and lock the knob. Position the cutting block at a rough level of resection and tighten the proximal/distal-sliding knob (Figure 88).



Figure 88

## Varus/Valgus

Establish rotational alignment by aligning the tibial Jig ankle clamp parallel to the transmalleolar axis. The midline of the tibia is approximately 3 mm medial to the transaxial midline.

Translate the lower assembly medially (usually to the second vertical mark) by pushing the varus/valgus adjustment wings.

There are vertical scribe marks for reference aligning to the middle of the talus (Figure 89).



Figure 89

# Appendix C: Spiked Uprod





Figure 90

Figure 91

### Slope

The spiked uprod and ankle clamp are designed to prevent an adverse anterior slope. On an average size tibia, this guide will give approximately a 0 degree tibial slope when the slope adjustment is translated anteriorly until it hits the stop. In some cases, a slight amount of slope will remain (1-2 degrees).

The angle of the tibial slope can be increased to greater than 0 degrees should the patient have a greater natural slope (Figure 90). First, unlock the slide locking position and then translate the tibial slope adjuster anteriorly until the desired angle is reached. For a Cruciate Substituting (CS) design, a 0 degree posterior slope is recommended. For a Cruciate Retaining (CR) design, a 3 degree posterior slope is recommended.

As each patient's anatomy varies, the spiked uprod can be used for both smaller and larger patients. The length of the tibia influences the amount of slope when translating the adapter anteriorly. The 0 degree default position can be overridden by moving the slope adjustment closer to the ankle.

On the spiked uprod 5, 6 and 7 zones are present, which correspond to the length of the tibia. These markings can by used to fine tune the amount of slope.

When the spiked uprod shows a larger zone (7) marking, this indicates that when the lower assembly is translated 7 mm anterior, it will give an additional 1 degree of posterior slope (Figure 91).

## Appendix C: Spiked Uprod

### Height

Loosen the proximal/distal sliding knob, insert the adjustable tibial stylus into the cutting block, and adjust to the correct level of resection.

When measuring from the less damaged side of the tibial plateau, set the stylus to 8 mm or 10 mm. If the stylus is placed on the more damaged side of the tibial plateau, set the stylus to 0 mm or 2 mm. Adjustment of resection height on the stylus should be done outside the joint space before locating the stylus in the cutting block.

If planning to resect through the slot, position the foot of the tibial stylus marked "slotted" into the slot of the tibial cutting block (Figure 92). If planning to resect on top of the cutting block, place the foot marked "non-slotted" into the cutting slot. Drop the block and stylus assembly so that the stylus touches the desired point on the tibia. Care should be taken with severe valgus deformity, not to over resect the tibia.

## Tibial Resection

After the height has been set, lock the proximal/distal sliding knob and pin the block through the 0 mm set of holes (the stylus may need to be removed for access). +/-2 mm pinholes are available on the resection blocks to further adjust the resection level where needed.

The block can be securely fixed with one extra convergent pin.

## Spiked Uprod Removal

Loosen the A/P locking knob. Press the cutting block release button and translate the spiked uprod anterior to disengage from the cutting block.

Connect the slap hammer to the top of the spiked uprod and disengage the spikes from the proximal tibia. Remove the tibial jig and perform the appropriate resection (Figure 93).



Figure 92

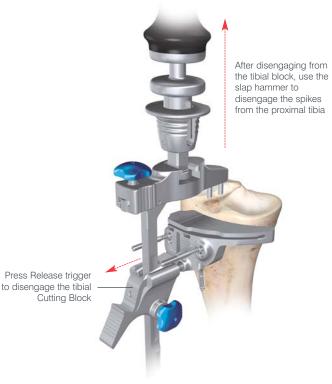



Figure 93

| Tibia Resection                            |                                                | Femoral Resection         |                                           |  |
|--------------------------------------------|------------------------------------------------|---------------------------|-------------------------------------------|--|
| 950501228                                  | HP EM Tibial Jig Uprod                         | 950501025                 | Sigma HP Classic A/P Block Size 1.5       |  |
| 950501229                                  | HP EM Tibial Jig Ankle Clamp                   | 950501026                 | Sigma HP Classic A/P Block Size 2         |  |
| 950501202                                  | HP IM Tibia Rotation Guide                     | 950501027                 | Sigma HP Classic A/P Block Size 2.5       |  |
| 950501203                                  | HP IM Tibia Jig                                | 950501028                 | Sigma HP Classic A/P Block Size 3         |  |
| 950501204                                  | Sigma HP 0 degree Symmetrical Cut Block        | 950501029                 | Sigma HP Classic A/P Block Size 4         |  |
| 950501222                                  | Sigma HP 0 degree Left Cut Block               | 950501030                 | Sigma HP Classic A/P Block Size 5         |  |
| 950501223                                  | Sigma HP 0 degree Right Cut Block              | 950501031                 | Sigma HP Classic A/P Block Size 6         |  |
| 950501205                                  | Sigma HP 3 degree Symmetrical Cut Block        | 950501032                 | Classic Femoral Chamfer Cut Block Handles |  |
| 950501224                                  | Sigma HP 3 degree Left Cut Block               | 950501000                 | Sigma HP Femoral Notch Guide Size 1.5     |  |
| 950501225                                  | Sigma HP 3 degree Right Cut Block              | 950501001                 | Sigma HP Femoral Notch Guide Size 2       |  |
| 950501209                                  | Sigma HP Adj Tibial Stylus                     | 950501002                 | Sigma HP Femoral Notch Guide Size 2.5     |  |
| 950501230                                  | HP EM Tibial Jig Spiked Uprod                  | 950501003                 | Sigma HP Femoral Notch Guide Size 3       |  |
| 950501164                                  | Sigma HP Slot Stylus 0/2 mm                    | 950501004                 | Sigma HP Femoral Notch Guide Size 4       |  |
| 950501167                                  | Sigma HP Nonslotted Stylus 0/2 mm              | 950501005                 | Sigma HP Femoral Notch Guide Size 5       |  |
| 950501211                                  | Sigma HP Slotted Stylus 8/10 mm                | 950501006                 | Sigma HP Femoral Notch Guide Size 6       |  |
| 950501213                                  | Sigma HP Nonslotted Stylus 8/10 mm             | 950502175                 | RPF HP Classic A/P Block Size 1           |  |
|                                            |                                                | 950502176                 | RPF HP Classic A/P Block Size 1.5         |  |
| Femoral Resection                          |                                                | 950502177                 | RPF HP Classic A/P Block Size 2           |  |
| 992011                                     | IM Rod Handle                                  | 950502178                 | RPF HP Classic A/P Block Size 2.5         |  |
| 966121                                     | IM Rod 300 mm                                  | 950502179                 | RPF HP Classic A/P Block Size 3           |  |
| 950502079                                  | HP Step IM Reamer                              | 950502180                 | RPF HP Classic A/P Block Size 4           |  |
| 950501234                                  | Sigma HP Distal Femoral Align Guide            | 950502181                 | RPF HP Classic A/P Block Size 5           |  |
| 950501235                                  | Sigma HP Distal Femoral Resection Guide        | 950502182                 | RPF HP Classic A/P Block Size 6           |  |
| 950501238                                  | Sigma HP Distal Femoral Connector              | 950502167                 | RPF HP Femoral Notch Guide Size 1         |  |
| 950501236                                  | Sigma HP Distal Femoral Block                  | 950502168                 | RPF HP Femoral Notch Guide Size 1.5       |  |
| 950501307                                  | HP Alignment Tower                             | 950502169                 | RPF HP Femoral Notch Guide Size 2         |  |
| 950501207                                  | HP Alignment Rod                               | 950502170                 | RPF HP Femoral Notch Guide Size 2.5       |  |
| 966530                                     | Reference Guide                                | 950502171                 | RPF HP Femoral Notch Guide Size 3         |  |
| 966120                                     | SP2 IM Rod 400 mm                              | 950502172                 | RPF HP Femoral Notch Guide Size 4         |  |
| 950501239                                  | Sigma HP Revision Distal Femoral Cutting Block | 950502173                 | RPF HP Femoral Notch Guide Size 5         |  |
|                                            |                                                | 950502174                 | RPF HP Femoral Notch Guide Size 6         |  |
| Measured Classic Femoral Sizing & Rotation |                                                |                           |                                           |  |
| 950501272                                  | HP Classic Anterior Down Femoral Sizer         | Fixed Bearing Preparation |                                           |  |
| 950501277                                  | HP Classic Posterior Up Femoral Sizer          | 950502040                 | Sigma HP F.B.T. Tray Trial Size 1.5       |  |
| 950501273                                  | HP Classic Rotation Guide 0 degree             | 950502041                 | Sigma HP F.B.T. Tray Trial Size 2         |  |
| 950501274                                  | HP Classic Rotation Guide 3 degree             | 950502042                 | Sigma HP F.B.T. Tray Trial Size 2.5       |  |
| 950501275                                  | HP Classic Rotation Guide 5 degree             | 950502043                 | Sigma HP F.B.T. Tray Trial Size 3         |  |
| 950501276                                  | HP Classic Rotation Guide 7 degree             | 950502044                 | Sigma HP F.B.T. Tray Trial Size 4         |  |
| 950501301                                  | HP Anterior Down Converter                     | 950502045                 | Sigma HP F.B.T. Tray Trial Size 5         |  |
| 950501302                                  | HP Posterior Up Converter                      | 950502046                 | Sigma HP F.B.T. Tray Trial Size 6         |  |

### Fixed Bearing Preparation

 950502053
 Sigma HP F.B.T. Evaluation Bullet 1.5-3

 950502054
 Sigma HP F.B.T. Evaluation Bullet 4-6

 950502055
 Sigma HP F.B.T. Keel Punch Impact

 950502060
 Sigma HP F.B.T. Drill Tower

 217830123
 M.B.T. Tray Fixation Pins

 950502028
 HP Tibial Tray Handle

 950502068
 F.B.T. Modular Drill Stop

### Fixed Bearing Modular Tray Preparation

HP F.B.T. Cemented Keel Punch Size 1.5-3 HP F.B.T. Cemented Keel Punch Size 4-5 950502048 950502049 HP F.B.T. Cemented Keel Punch Size 6 Sigma HP F.B.T. Cemented Drill Size 1.5-3 950502056 950502057 Sigma HP F.B.T. Cemented Drill Size 4-6 950502050 HP F.B.T. Non-Cemented KI Punch Size 1.5-3 950502051 HP F.B.T. Non-Cemented KI Punch Size 4-5 HP F.B.T. Non-Cemented Drill Size 1.5-3 950502058 950502059 HP F.B.T. Non-Cemented Drill Size 4-6 950502052 HP F.B.T. Non-Cemented KI Punch Size 6

### Fixed Bearing Standard Tray Preparation

950502061 HP F.B.T. Standard Tibial Punch Guide Size 1.5-4
950502062 HP F.B.T. Standard Tibial Punch Guide Size 5-6
950502063 HP F.B.T. Standard Tibial Punch Size 1.5-2
950502064 HP F.B.T. Standard Tibial Punch Size 2.5-4
950502065 HP F.B.T. Standard Tibial Punch Size 5-6
950502066 HP F.B.T. Standard Cm Tibial Punch Size 1.5-2
950502067 HP F.B.T. Standard Cm Tibial Punch Size 2.5-6

## M.B.T. Preparation

950502000 HP M.B.T. Tray Trial Size 1 950502001 HP M.B.T. Tray Trial Size 1.5 HP M.B.T. Tray Trial Size 2 950502002 950502003 HP M.B.T. Tray Trial Size 2.5 950502004 HP M.B.T. Tray Trial Size 3 HP M.B.T. Tray Trial Size 4 950502006 HP M.B.T. Tray Trial Size 5 950502007 HP M.B.T. Tray Trial Size 6 950502008 950502009 HP M.B.T. Tray Trial Size 7

950502022 HP M.B.T. Spiked Evaluation Bullet Size 1-3

### M.B.T. Preparation

950502023 HP M.B.T. Spiked Evaluation Bullet Size 4-7 950502099 M.B.T. Evaluation Bullet Size 1-3" 950502098 M.B.T. Evaluation Bullet Size 4-7" 950502027 HP M.B.T. Drill Tower 950502024 HP M.B.T. Keel Punch Impact M.B.T. Tray Fixation Pins 217830123 950502028 HP Tibial Tray Handle 950502029 M.B.T. Modular Drill Stop 950502038 M.B.T. Central Stem Punch 217830137 M.B.T. RP Trial Button M.B.T. RP Plateau Trial Post 217830121

#### M.B.T. Keeled Preparation

950502025 HP M.B.T. Cemented Central Drill 950502010 HP M.B.T. Cemented Keel Punch Size 1-1.5 950502011 HP M.B.T. Cemented Keel Punch Size 2-3 950502012 HP M.B.T. Cemented Keel Punch Size 4-7 950502026 HP M.B.T. Non Cemented Central Drill 950502013 HP M.B.T. Non-Cemented KI Punch Size 1-1.5 950502014 HP M.B.T. Non-Cemented KI Punch Size 2-3 950502015 HP M.B.T. Non-Cemented KI Punch Size 4-7

### M.B.T. Non Keeled Preparation

950502025 HP M.B.T. Cemented Central Drill 950502016 HP M.B.T. Cemented Punch Size 1-1.5 950502017 HP M.B.T. Cemented Punch Size 2-3 950502018 HP M.B.T. Cemented Punch Size 4-7 950502026 HP M.B.T. Non-Cemented Central Drill 950502019 HP M.B.T. Non-Cemented Punch Size 1-1.5 HP M.B.T. Non-Cemented Punch Size 2-3 950502020 950502021 HP M.B.T. Non-Cemented Punch Size 4-7

Femoral Trials

| Femoral Irials     |                                           | Fixed Bearing Inse | ert Trials                                     |
|--------------------|-------------------------------------------|--------------------|------------------------------------------------|
| 961007             | Sigma Femur CR Femur Trial Size 1.5 Left  | Posterior Lipped   |                                                |
| 961002             | Sigma Femur CR Femur Trial Size 2 Left    | 961210             | Sigma PLI Tibial Insert Trial Size 1.5 8 mm    |
| 961008             | Sigma Femur CR Femur Trial Size 2.5 Left  | 961211             | Sigma PLI Tibial Insert Trial Size 1.5 10 mm   |
| 961003             | Sigma Femur CR Femur Trial Size 3 Left    | 961212             | Sigma PLI Tibial Insert Trial Size 1.5 12.5 mm |
| 961004             | Sigma Femur CR Femur Trial Size 4 Left    | 961213             | Sigma PLI Tibial Insert Trial Size 1.5 15 mm   |
| 961005             | Sigma Femur CR Femur Trial Size 5 Left    | 961214             | Sigma PLI Tibial Insert Trial Size 1.5 17.5 mm |
| 961006             | Sigma Femur CR Femur Trial Size 6 Left    | 961215             | Sigma PLI Tibial Insert Trial Size 1.5 20 mm   |
| 961017             | Sigma Femur CR Femur Trial Size 1.5 Right | 961220             | Sigma PLI Tibial Insert Trial Size 2 8 mm      |
| 961012             | Sigma Femur CR Femur Trial Size 2 Right   | 961221             | Sigma PLI Tibial Insert Trial Size 2 10 mm     |
| 961018             | Sigma Femur CR Femur Trial Size 2.5 Right | 961222             | Sigma PLI Tibial Insert Trial Size 2 12.5 mm   |
| 961013             | Sigma Femur CR Femur Trial Size 3 Right   | 961223             | Sigma PLI Tibial Insert Trial Size 2 15 mm     |
| 961014             | Sigma Femur CR Femur Trial Size 4 Right   | 961224             | Sigma PLI Tibial Insert Trial Size 2 17.5 mm   |
| 961015             | Sigma Femur CR Femur Trial Size 5 Right   | 961225             | Sigma PLI Tibial Insert Trial Size 2 20 mm     |
| 961016             | Sigma Femur CR Femur Trial Size 6 Right   | 961230             | Sigma PLI Tibial Insert Trial Size 2.5 8 mm    |
| 966202             | Distal Femoral Lug Drill w/Hudson End     | 961231             | Sigma PLI Tibial Insert Trial Size 2.5 10 mm   |
| 961047             | Sigma Femur CS Box Trial Size 1.5         | 961232             | Sigma PLI Tibial Insert Trial Size 2.5 12.5 mm |
| 961042             | Sigma Femur CS Box Trial Size 2           | 961233             | Sigma PLI Tibial Insert Trial Size 2.5 15 mm   |
| 961048             | Sigma Femur CS Box Trial Size 2.5         | 961234             | Sigma PLI Tibial Insert Trial Size 2.5 17.5 mm |
| 961043             | Sigma Femur CS Box Trial Size 3           | 961235             | Sigma PLI Tibial Insert Trial Size 2.5 20 mm   |
| 961044             | Sigma Femur CS Box Trial Size 4           | 961240             | Sigma PLI Tibial Insert Trial Size 3 8 mm      |
| 961045             | Sigma Femur CS Box Trial Size 5           | 961241             | Sigma PLI Tibial Insert Trial Size 3 10 mm     |
| 961046             | Sigma Femur CS Box Trial Size 6           | 961242             | Sigma PLI Tibial Insert Trial Size 3 12.5 mm   |
| 966295             | SP2 Femur Box Trial Screwdriver           | 961243             | Sigma PLI Tibial Insert Trial Size 3 15 mm     |
| 296000400          | Sigma Femur CR Femur Trial Sz 4N LT       | 961244             | Sigma PLI Tibial Insert Trial Size 3 17.5 mm   |
| 296001400          | Sigma Femur CR Femur Trial Sz 4N RT       | 961245             | Sigma PLI Tibial Insert Trial Size 3 20 mm     |
|                    |                                           | 961250             | Sigma PLI Tibial Insert Trial Size 4 8 mm      |
| RP-F Femoral Trial | s                                         | 961251             | Sigma PLI Tibial Insert Trial Size 4 10 mm     |
| 954210             | RP-F Trial Femur Size 1 Left              | 961252             | Sigma PLI Tibial Insert Trial Size 4 12.5 mm   |
| 954211             | RP-F Trial Femur Size 1.5 Left            | 961253             | Sigma PLI Tibial Insert Trial Size 4 15 mm     |
| 954212             | RP-F Trial Femur Size 2 Left              | 961254             | Sigma PLI Tibial Insert Trial Size 4 17.5 mm   |
| 954213             | RP-F Trial Femur Size 2.5 Left            | 961255             | Sigma PLI Tibial Insert Trial Size 4 20 mm     |
| 954214             | RP-F Trial Femur Size 3 Left              | 961260             | Sigma PLI Tibial Insert Trial Size 5 8 mm      |
| 954215             | RP-F Trial Femur Size 4 Left              | 961261             | Sigma PLI Tibial Insert Trial Size 5 10 mm     |
| 954216             | RP-F Trial Femur Size 5 Left              | 961262             | Sigma PLI Tibial Insert Trial Size 5 12.5 mm   |
| 954217             | RP-F Trial Femur Size 6 Left              | 961263             | Sigma PLI Tibial Insert Trial Size 5 15 mm     |
| 954220             | RP-F Trial Femur Size 1 Right             | 961264             | Sigma PLI Tibial Insert Trial Size 5 17.5 mm   |
| 954221             | RP-F Trial Femur Size 1.5 Right           | 961265             | Sigma PLI Tibial Insert Trial Size 5 20 mm     |
| 954222             | RP-F Trial Femur Size 2 Right             | 961270             | Sigma PLI Tibial Insert Trial Size 6 8 mm      |
| 954223             | RP-F Trial Femur Size 2.5 Right           | 961271             | Sigma PLI Tibial Insert Trial Size 6 10 mm     |
| 954224             | RP-F Trial Femur Size 3 Right             | 961272             | Sigma PLI Tibial Insert Trial Size 6 12.5 mm   |
| 954225             | RP-F Trial Femur Size 4 Right             | 961273             | Sigma PLI Tibial Insert Trial Size 6 15 mm     |
| 954226             | RP-F Trial Femur Size 5 Right             | 961274             | Sigma PLI Tibial Insert Trial Size 6 17.5 mm   |
| 954227             | RP-F Trial Femur Size 6 Right             | 961275             | Sigma PLI Tibial Insert Trial Size 6 20 mm     |
| 296008400          | Sigma RPF PS Femur Trial Sz 4N LT         |                    |                                                |
| 296009400          | Sigma RPF PS Femur Trial Sz 4N RT         |                    |                                                |
|                    |                                           |                    |                                                |

Fixed Bearing Insert Trials

| Curved |                                                   | Curved Plus |                                       |
|--------|---------------------------------------------------|-------------|---------------------------------------|
| 961320 | Sigma Curved Tibial Insert Trial Size 1.5 8 mm    | 972320      | Sigma Curved+ Insert Trial 1.5 8mm    |
| 961321 | Sigma Curved Tibial Insert Trial Size 1.5 10 mm   | 972321      | Sigma Curved+ Insert Trial 1.5 10mm   |
| 961322 | Sigma Curved Tibial Insert Trial Size 1.5 12.5 mm | 972322      | Sigma Curved+ Insert Trial 1.5 12.5mm |
| 961323 | Sigma Curved Tibial Insert Trial Size 1.5 15 mm   | 972323      | Sigma Curved+ Insert Trial 1.5 15mm   |
| 961324 | Sigma Curved Tibial Insert Trial Size 1.5 17.5 mm | 972324      | Sigma Curved+ Insert Trial 1.5 17.5mm |
| 961325 | Sigma Curved Tibial Insert Trial Size 1.5 20 mm   | 972330      | Sigma Curved+ Insert Trial 2 8mm      |
| 961330 | Sigma Curved Tibial Insert Trial Size 2 8 mm      | 972331      | Sigma Curved+ Insert Trial 2 10mm     |
| 961331 | Sigma Curved Tibial Insert Trial Size 2 10 mm     | 972332      | Sigma Curved+ Insert Trial 2 12.5mm   |
| 961332 | Sigma Curved Tibial Insert Trial Size 2 12.5 mm   | 972333      | Sigma Curved+ Insert Trial 2 15mm     |
| 961333 | Sigma Curved Tibial Insert Trial Size 2 15 mm     | 972334      | Sigma Curved+ Insert Trial 2 17.5mm   |
| 961334 | Sigma Curved Tibial Insert Trial Size 2 17.5 mm   | 972335      | Sigma Curved+ Insert Trial 2 20mm     |
| 961335 | Sigma Curved Tibial Insert Trial Size 2 20 mm     | 972340      | Sigma Curved+ Insert Trial 2.5 8mm    |
| 961340 | Sigma Curved Tibial Insert Trial Size 2.5 8 mm    | 972341      | Sigma Curved+ Insert Trial 2.5 10mm   |
| 961341 | Sigma Curved Tibial Insert Trial Size 2.5 10 mm   | 972342      | Sigma Curved+ Insert Trial 2.5 12.5mm |
| 961342 | Sigma Curved Tibial Insert Trial Size 2.5 12.5 mm | 972343      | Sigma Curved+ Insert Trial 2.5 15mm   |
| 961343 | Sigma Curved Tibial Insert Trial Size 2.5 15 mm   | 972344      | Sigma Curved+ Insert Trial 2.5 17.5mm |
| 961344 | Sigma Curved Tibial Insert Trial Size 2.5 17.5 mm | 972345      | Sigma Curved+ Insert Trial 2.5 20mm   |
| 961345 | Sigma Curved Tibial Insert Trial Size 2.5 20 mm   | 972350      | Sigma Curved+ Insert Trial 3 8mm      |
| 961350 | Sigma Curved Tibial Insert Trial Size 3 8 mm      | 972351      | Sigma Curved+ Insert Trial 3 10mm     |
| 961351 | Sigma Curved Tibial Insert Trial Size 3 10 mm     | 972352      | Sigma Curved+ Insert Trial 3 12.5mm   |
| 961352 | Sigma Curved Tibial Insert Trial Size 3 12.5 mm   | 972353      | Sigma Curved+ Insert Trial 3 15mm     |
| 961353 | Sigma Curved Tibial Insert Trial Size 3 15 mm     | 972354      | Sigma Curved+ Insert Trial 3 17.5mm   |
| 961354 | Sigma Curved Tibial Insert Trial Size 3 17.5 mm   | 972355      | Sigma Curved+ Insert Trial 3 20mm     |
| 961355 | Sigma Curved Tibial Insert Trial Size 3 20 mm     | 972360      | Sigma Curved+ Insert Trial 4 8mm      |
| 961360 | Sigma Curved Tibial Insert Trial Size 4 8 mm      | 972361      | Sigma Curved+ Insert Trial 4 10mm     |
| 961361 | Sigma Curved Tibial Insert Trial Size 4 10 mm     | 972362      | Sigma Curved+ Insert Trial 4 12.5mm   |
| 961362 | Sigma Curved Tibial Insert Trial Size 4 12.5 mm   | 972363      | Sigma Curved+ Insert Trial 4 15mm     |
| 961363 | Sigma Curved Tibial Insert Trial Size 4 15 mm     | 972364      | Sigma Curved+ Insert Trial 4 17.5mm   |
| 961364 | Sigma Curved Tibial Insert Trial Size 4 17.5 mm   | 972365      | Sigma Curved+ Insert Trial 4 20mm     |
| 961365 | Sigma Curved Tibial Insert Trial Size 4 20 mm     | 972370      | Sigma Curved+ Insert Trial 5 8mm      |
| 961370 | Sigma Curved Tibial Insert Trial Size 5 8 mm      | 972371      | Sigma Curved+ Insert Trial 5 10mm     |
| 961371 | Sigma Curved Tibial Insert Trial Size 5 10 mm     | 972372      | Sigma Curved+ Insert Trial 5 12.5mm   |
| 961372 | Sigma Curved Tibial Insert Trial Size 5 12.5 mm   | 972373      | Sigma Curved+ Insert Trial 5 15mm     |
| 961373 | Sigma Curved Tibial Insert Trial Size 5 15 mm     | 972374      | Sigma Curved+ Insert Trial 5 17.5mm   |
| 961374 | Sigma Curved Tibial Insert Trial Size 5 17.5 mm   | 972375      | Sigma Curved+ Insert Trial 5 20mm     |
| 961375 | Sigma Curved Tibial Insert Trial Size 5 20 mm     | 972380      | Sigma Curved+ Insert Trial 6 8mm      |
| 961380 | Sigma Curved Tibial Insert Trial Size 6 8 mm      | 972381      | Sigma Curved+ Insert Trial 6 10mm     |
| 961381 | Sigma Curved Tibial Insert Trial Size 6 10 mm     | 972382      | Sigma Curved+ Insert Trial 6 12.5mm   |
| 961382 | Sigma Curved Tibial Insert Trial Size 6 12.5 mm   | 972383      | Sigma Curved+ Insert Trial 6 15mm     |
| 961383 | Sigma Curved Tibial Insert Trial Size 6 15 mm     | 972384      | Sigma Curved+ Insert Trial 6 17.5mm   |
| 961384 | Sigma Curved Tibial Insert Trial Size 6 17.5 mm   | 972385      | Sigma Curved+ Insert Trial 6 20mm     |
| 961385 | Sigma Curved Tibial Insert Trial Size 6 20 mm     |             |                                       |

| Stabilized |                                                       | Stabilized          |                                                      |
|------------|-------------------------------------------------------|---------------------|------------------------------------------------------|
| 961410     | Sigma Stabilized Tibial Insert Trial Size 1.5 8 mm    | 961465              | Sigma Stabilized Tibial Insert Trial Size 5 20 mm    |
| 961411     | Sigma Stabilized Tibial Insert Trial Size 1.5 10 mm   | 961466              | Sigma Stabilized Tibial Insert Trial Size 5 22.5 mm  |
| 961412     | Sigma Stabilized Tibial Insert Trial Size 1.5 12.5 mm | 961467              | Sigma Stabilized Tibial Insert Trial Size 5 25 mm    |
| 961413     | Sigma Stabilized Tibial Insert Trial Size 1.5 15 mm   | 961470              | Sigma Stabilized Tibial Insert Trial Size 6 8 mm     |
| 961414     | Sigma Stabilized Tibial Insert Trial Size 1.5 17.5 mm | 961471              | Sigma Stabilized Tibial Insert Trial Size 6 10 mm    |
| 961420     | Sigma Stabilized Tibial Insert Trial Size 2 8 mm      | 961472              | Sigma Stabilized Tibial Insert Trial Size 6 12.5 mm  |
| 961421     | Sigma Stabilized Tibial Insert Trial Size 2 10 mm     | 961473              | Sigma Stabilized Tibial Insert Trial Size 6 15 mm    |
| 961422     | Sigma Stabilized Tibial Insert Trial Size 2 12.5 mm   | 961474              | Sigma Stabilized Tibial Insert Trial Size 6 17.5 mm  |
| 961423     | Sigma Stabilized Tibial Insert Trial Size 2 15 mm     | 961475              | Sigma Stabilized Tibial Insert Trial Size 6 20 mm    |
| 961424     | Sigma Stabilized Tibial Insert Trial Size 2 17.5 mm   | 961476              | Sigma Stabilized Tibial Insert Trial Size 6 22.5 mm  |
| 961425     | Sigma Stabilized Tibial Insert Trial Size 2 20 mm     | 961477              | Sigma Stabilized Tibial Insert Trial Size 6 25 mm    |
| 961426     | Sigma Stabilized Tibial Insert Trial Size 2 22.5 mm   |                     |                                                      |
| 961427     | Sigma Stabilized Tibial Insert Trial Size 2 25 mm     | Mobile Bearing Inse | rt Trials                                            |
| 961430     | Sigma Stabilized Tibial Insert Trial Size 2.5 8 mm    | RP Curved           |                                                      |
| 961431     | Sigma Stabilized Tibial Insert Trial Size 2.5 10 mm   | 973001              | Sigma RP Curved Tibial Insert Trial Size 1.5 10 mm   |
| 961432     | Sigma Stabilized Tibial Insert Trial Size 2.5 12.5 mm | 973002              | Sigma RP Curved Tibial Insert Trial Size 1.5 12.5 mm |
| 961433     | Sigma Stabilized Tibial Insert Trial Size 2.5 15 mm   | 973003              | Sigma RP Curved Tibial Insert Trial Size 1.5 15.0 mm |
| 961434     | Sigma Stabilized Tibial Insert Trial Size 2.5 17.5 mm | 973004              | Sigma RP Curved Tibial Insert Trial Size 1.5 17.5 mm |
| 961435     | Sigma Stabilized Tibial Insert Trial Size 2.5 20 mm   | 963011              | Sigma RP Curved Tibial Insert Trial Size 2 10 mm     |
| 961436     | Sigma Stabilized Tibial Insert Trial Size 2.5 22.5 mm | 963012              | Sigma RP Curved Tibial Insert Trial Size 2 12.5 mm   |
| 961437     | Sigma Stabilized Tibial Insert Trial Size 2.5 25 mm   | 963013              | Sigma RP Curved Tibial Insert Trial Size 2 15.0 mm   |
| 961440     | Sigma Stabilized Tibial Insert Trial Size 3 8 mm      | 963014              | Sigma RP Curved Tibial Insert Trial Size 2 17.5 mm   |
| 961441     | Sigma Stabilized Tibial Insert Trial Size 3 10 mm     | 963021              | Sigma RP Curved Tibial Insert Trial Size 2.5 10 mm   |
| 961442     | Sigma Stabilized Tibial Insert Trial Size 3 12.5 mm   | 963022              | Sigma RP Curved Tibial Insert Trial Size 2.5 12.5 mm |
| 961443     | Sigma Stabilized Tibial Insert Trial Size 3 15 mm     | 963023              | Sigma RP Curved Tibial Insert Trial Size 2.5 15.0 mm |
| 961444     | Sigma Stabilized Tibial Insert Trial Size 3 17.5 mm   | 963024              | Sigma RP Curved Tibial Insert Trial Size 2.5 17.5 mm |
| 961445     | Sigma Stabilized Tibial Insert Trial Size 3 20 mm     | 963031              | Sigma RP Curved Tibial Insert Trial Size 3 10 mm     |
| 961446     | Sigma Stabilized Tibial Insert Trial Size 3 22.5 mm   | 963032              | Sigma RP Curved Tibial Insert Trial Size 3 12.5 mm   |
| 961447     | Sigma Stabilized Tibial Insert Trial Size 3 25 mm     | 963033              | Sigma RP Curved Tibial Insert Trial Size 3 15.0 mm   |
| 961450     | Sigma Stabilized Tibial Insert Trial Size 4 8 mm      | 963034              | Sigma RP Curved Tibial Insert Trial Size 3 17.5 mm   |
| 961451     | Sigma Stabilized Tibial Insert Trial Size 4 10 mm     | 963041              | Sigma RP Curved Tibial Insert Trial Size 4 10 mm     |
| 961452     | Sigma Stabilized Tibial Insert Trial Size 4 12.5 mm   | 963042              | Sigma RP Curved Tibial Insert Trial Size 4 12.5 mm   |
| 961453     | Sigma Stabilized Tibial Insert Trial Size 4 15 mm     | 963043              | Sigma RP Curved Tibial Insert Trial Size 4 15.0 mm   |
| 961454     | Sigma Stabilized Tibial Insert Trial Size 4 17.5 mm   | 963044              | Sigma RP Curved Tibial Insert Trial Size 4 17.5 mm   |
| 961455     | Sigma Stabilized Tibial Insert Trial Size 4 20 mm     | 963051              | Sigma RP Curved Tibial Insert Trial Size 5 10 mm     |
| 961456     | Sigma Stabilized Tibial Insert Trial Size 4 22.5 mm   | 963052              | Sigma RP Curved Tibial Insert Trial Size 5 12.5 mm   |
| 961457     | Sigma Stabilized Tibial Insert Trial Size 4 25 mm     | 963053              | Sigma RP Curved Tibial Insert Trial Size 5 15.0 mm   |
| 961460     | Sigma Stabilized Tibial Insert Trial Size 5 8 mm      | 963054              | Sigma RP Curved Tibial Insert Trial Size 5 17.5 mm   |
| 961461     | Sigma Stabilized Tibial Insert Trial Size 5 10 mm     | 963061              | Sigma RP Curved Tibial Insert Trial Size 6 10 mm     |
| 961462     | Sigma Stabilized Tibial Insert Trial Size 5 12.5 mm   | 963062              | Sigma RP Curved Tibial Insert Trial Size 6 12.5 mm   |
| 961463     | Sigma Stabilized Tibial Insert Trial Size 5 15 mm     | 963063              | Sigma RP Curved Tibial Insert Trial Size 6 15.0 mm   |
| 961464     | Sigma Stabilized Tibial Insert Trial Size 5 17.5 mm   | 963064              | Sigma RP Curved Tibial Insert Trial Size 6 17.5 mm   |
|            |                                                       |                     |                                                      |

| RP Stabilized |                                                          | RP Stabilized |                                                        |
|---------------|----------------------------------------------------------|---------------|--------------------------------------------------------|
| 973101        | Sigma RP Stabilized Tibial Insert Trial Size 1.5 10.0 mm | 963163        | Sigma RP Stabilized Tibial Insert Trial Size 6 15.0 mm |
| 973102        | Sigma RP Stabilized Tibial Insert Trial Size 1.5 12.5 mm | 963164        | Sigma RP Stabilized Tibial Insert Trial Size 6 17.5 mm |
| 973103        | Sigma RP Stabilized Tibial Insert Trial Size 1.5 15.0 mm | 963165        | Sigma RP Stabilized Tibial Insert Trial Size 6 20.0 mm |
| 973104        | Sigma RP Stabilized Tibial Insert Trial Size 1.5 17.5 mm | 963166        | Sigma RP Stabilized Tibial Insert Trial Size 6 22.5 mm |
| 963105        | Sigma RP Stabilized Tibial Insert Trial Size 1.5 20.0 mm | 963167        | Sigma RP Stabilized Tibial Insert Trial Size 6 25 mm   |
| 963111        | Sigma RP Stabilized Tibial Insert Trial Size 2 10.0 mm   |               |                                                        |
| 963112        | Sigma RP Stabilized Tibial Insert Trial Size 2 12.5 mm   | RP-F          |                                                        |
| 963113        | Sigma RP Stabilized Tibial Insert Trial Size 2 15.0 mm   | 954110        | RP-F Tibial Insert Trial 10 mm Size 1                  |
| 963114        | Sigma RP Stabilized Tibial Insert Trial Size 2 17.5 mm   | 954111        | RP-F Tibial Insert Trial 12.5 mm Size1                 |
| 963115        | Sigma RP Stabilized Tibial Insert Trial Size 2 20.0 mm   | 954112        | RP-F Tibial Insert Trial 15 mm Size 1                  |
| 963116        | Sigma RP Stabilized Tibial Insert Trial Size 2 22.5. mm  | 954113        | RP-F Tibial Insert Trial 17.5 mm Size 1                |
| 963117        | Sigma RP Stabilized Tibial Insert Trial Size 2 25 mm     | 954114        | RP-F Tibial Insert Trial 10 mm Size 1.5                |
| 963121        | Sigma RP Stabilized Tibial Insert Trial Size 2.5 10.0 mm | 954115        | RP-F Tibial Insert Trial 12.5 mm Size 1.5              |
| 963122        | Sigma RP Stabilized Tibial Insert Trial Size 2.5 12.5 mm | 954116        | RP-F Tibial Insert Trial 15 mm Size 1.5                |
| 963123        | Sigma RP Stabilized Tibial Insert Trial Size 2.5 15.0 mm | 954117        | RP-F Tibial Insert Trial 17.5 mm Size 1.5              |
| 963124        | Sigma RP Stabilized Tibial Insert Trial Size 2.5 17.5 mm | 954120        | RP-F Tibial Insert Trial 10 mm Size 2                  |
| 963125        | Sigma RP Stabilized Tibial Insert Trial Size 2.5 20.0 mm | 954121        | RP-F Tibial Insert Trial 12.5 mm Size 2                |
| 963126        | Sigma RP Stabilized Tibial Insert Trial Size 2.5 22.5 mm | 954122        | RP-F Tibial Insert Trial 15 mm Size 2                  |
| 963127        | Sigma RP Stabilized Tibial Insert Trial Size 2.5 25 mm   | 954123        | RP-F Tibial Insert Trial 17.5 mm Size 2                |
| 963131        | Sigma RP Stabilized Tibial Insert Trial Size 3 10.0 mm   | 954125        | RP-F Tibial Insert Trial 10 mm Size 2.5                |
| 963132        | Sigma RP Stabilized Tibial Insert Trial Size 3 12.5 mm   | 954126        | RP-F Tibial Insert Trial 12.5 mm Size 2.5              |
| 963133        | Sigma RP Stabilized Tibial Insert Trial Size 3 15.0 mm   | 954127        | RP-F Tibial Insert Trial 15 mm Size 2.5                |
| 963134        | Sigma RP Stabilized Tibial Insert Trial Size 3 17.5 mm   | 954128        | RP-F Tibial Insert Trial 17.5 mm Size 2.5              |
| 963135        | Sigma RP Stabilized Tibial Insert Trial Size 3 20.0 mm   | 954130        | RP-F Tibial Insert Trial 10 mm Size 3                  |
| 963136        | Sigma RP Stabilized Tibial Insert Trial Size 3 22.5. mm  | 954131        | RP-F Tibial Insert Trial 12.5 mm Size 3                |
| 963137        | Sigma RP Stabilized Tibial Insert Trial Size 3 25 mm     | 954132        | RP-F Tibial Insert Trial 15 mm Size 3                  |
| 963141        | Sigma RP Stabilized Tibial Insert Trial Size 4 10.0 mm   | 954133        | RP-F Tibial Insert Trial 17.5 mm Size 3                |
| 963142        | Sigma RP Stabilized Tibial Insert Trial Size 4 12.5 mm   | 954140        | RP-F Tibial Insert Trial 10 mm Size 4                  |
| 963143        | Sigma RP Stabilized Tibial Insert Trial Size 4 15.0 mm   | 954141        | RP-F Tibial Insert Trial 12.5 mm Size 4                |
| 963144        | Sigma RP Stabilized Tibial Insert Trial Size 4 17.5 mm   | 954142        | RP-F Tibial Insert Trial 15 mm Size 4                  |
| 963145        | Sigma RP Stabilized Tibial Insert Trial Size 4 20.0 mm   | 954143        | RP-F Tibial Insert Trial 17.5 mm Size 4                |
| 963146        | Sigma RP Stabilized Tibial Insert Trial Size 4 22.5 mm   | 954150        | RP-F Tibial Insert Trial 10 mm Size 5                  |
| 963147        | Sigma RP Stabilized Tibial Insert Trial Size 4 25 mm     | 954151        | RP-F Tibial Insert Trial 12.5 mm Size 5                |
| 963151        | Sigma RP Stabilized Tibial Insert Trial Size 5 10.0 mm   | 954152        | RP-F Tibial Insert Trial 15 mm Size 5                  |
| 963152        | Sigma RP Stabilized Tibial Insert Trial Size 5 12.5 mm   | 954153        | RP-F Tibial Insert Trial 17.5 mm Size 5                |
| 963153        | Sigma RP Stabilized Tibial Insert Trial Size 5 15.0 mm   | 954160        | RP-F Tibial Insert Trial 10 mm Size 6                  |
| 963154        | Sigma RP Stabilized Tibial Insert Trial Size 5 17.5 mm   | 954161        | RP-F Tibial Insert Trial 12.5 mm Size 6                |
| 963155        | Sigma RP Stabilized Tibial Insert Trial Size 5 20.0 mm   | 954162        | RP-F Tibial Insert Trial 15 mm Size 6                  |
| 963156        | Sigma RP Stabilized Tibial Insert Trial Size 5 22.5 mm   | 954163        | RP-F Tibial Insert Trial 17 mm Size 6                  |
| 963157        | Sigma RP Stabilized Tibial Insert Trial Size 5 25 mm     |               |                                                        |
| 963161        | Sigma RP Stabilized Tibial Insert Trial Size 6 10.0 mm   |               |                                                        |
| 963162        | Sigma RP Stabilized Tibial Insert Trial Size 6 12.5 mm   |               |                                                        |

| Patella Resection |                                                 | RP-F                 |                                               |
|-------------------|-------------------------------------------------|----------------------|-----------------------------------------------|
| 950501121         | Sigma HP Patella Resection Guide                | 950502104            | Sigma RP-F HP Flex Shim Size 1                |
| 950501242         | Sigma HP Patella Resection Stylus 32-38 mm      | 950502100            | Sigma RP-F HP Flex Shim Size 1.5              |
| 950501243         | Sigma HP Patella Resection Stylus 41 mm         | 950502101            | Sigma RP-F HP Flex Shim Size 2                |
| 950501247         | Sigma HP Patella Resection Stylus 12 mm Remnant | 950502102            | Sigma RP-F HP Flex Shim Size 2.5-5            |
| 950501923         | HP Patella Wafer Small                          | 950502103            | Sigma RP-F HP Flex Shim Size 6                |
| 950501623         | HP Patella Wafer Large                          | 950502193            | Flexion/ Extension CAP Size 6                 |
| 869188            | Patella Caliper                                 |                      |                                               |
| 865035            | Patella Clamp                                   | Pinning              |                                               |
| 868801            | Oval Patella Drill w/Hudson End                 | 950502070            | HP Pin Impactor/Extractor                     |
| 961100            | PFC* Sigma Oval/Dome Patella Trial 3 Peg 32 mm  | 950502071            | HP Power Pin Driver                           |
| 961101            | PFC* Sigma Oval/Dome Patella Trial 3 Peg 35 mm  | 950502072            | HP Quick Pin Drills                           |
| 961102            | PFC* Sigma Oval/Dome Patella Trial 3 Peg 38 mm  | 950502073            | HP Quick Pin Drills Headed                    |
| 961103            | PFC* Sigma Oval/Dome Patella Trial 3 Peg 41 mm  | 950502088            | HP Threaded Pins                              |
| 966601            | Patellar Drill Guide 38 mm & 41 mm              | 950502089            | HP Threaded Pins Headed                       |
| 966602            | Patellar Drill Guide 32 mm & 35 mm              | 226712000            | Smooth 3 Inch Pins (5 Pack)                   |
|                   |                                                 | 950502300            | Sigma HP Quick Drill Pins-Sterile             |
| Spacer blocks     |                                                 | 950502302            | Sigma HP Threaded Pins-Sterile                |
| Fixed Bearing     |                                                 | 950502303            | Sigma HP Threaded Pins Headed-Sterile         |
| 950502105         | Sigma HP F.B.T. Spacer Block 8 mm               |                      |                                               |
| 950502106         | Sigma HP F.B.T. Spacer Block 10 mm              | Insertion            |                                               |
| 950502107         | Sigma HP F.B.T. Spacer Block 12.5 mm            | Femur                |                                               |
| 950502108         | Sigma HP F.B.T. Spacer Block 15 mm              | 950501218            | Sigma HP Femoral Notch Impactor               |
| 950502109         | Sigma HP F.B.T. Spacer Block 17.5 mm            | 950501171            | HP Femoral Impactor/Extractor                 |
| 950502110         | Sigma HP F.B.T. Spacer Block 20 mm              | 950501308            | HP Slap Hammer                                |
| 950502111         | Sigma HP F.B.T. Spacer Block 22.5 mm            | 950501305            | HP Universal Handle                           |
| 950502112         | Sigma HP F.B.T. Spacer Block 25 mm              |                      |                                               |
| 950502113         | Sigma HP F.B.T. Spacer Block 30 mm              | Mobile Bearing Tibia |                                               |
| 950502193         | Flexion/ Extension CAP Size 6                   | 950501558            | M.B.T. Tibial Impactor                        |
|                   |                                                 | 965383               | M.B.T. Tray Impactor                          |
| Mobile Bearing    |                                                 | 950501559            | M.B.T. Tibial Impactor Replacement Parts      |
| 950502114         | HP M.B.T. Spacer Block 10 mm                    |                      |                                               |
| 950502115         | HP M.B.T Spacer Block 12.5 mm                   | Fixed Bearing Tibi   | a                                             |
| 950502116         | HP M.B.T Spacer Block 15 mm                     | 950501306            | Sigma FB Tibial Impactor                      |
| 950502117         | HP M.B.T Spacer Block 17.5 mm                   | 2581-11-000          | F.B.T. Tray Inserter                          |
| 950502118         | HP M.B.T Spacer Block 20 mm                     | 966385               | F.B.T. Poly PS                                |
| 950502119         | HP M.B.T Spacer Block 22.5 mm                   | 950501170            | Sigma F.B.T. Tibia Impactor Replacement Parts |
| 950502120         | HP M.B.T Spacer Block 25 mm                     | 966384               | F.B.T. Tray Inserter                          |
| 950502121         | HP M.B.T Spacer Block 30 mm                     |                      |                                               |
| 950502193         | Flexion/Extension CAP Size 6                    |                      |                                               |

### Anterior First

950502090 Sigma HP Anterior 1st Resection Guide 950502092 Sigma HP Anterior 1st Ledge Sz 1.5-2 950502093 Sigma HP Anterior 1st Ledge Sz 2.5-3 950502094 Sigma HP Anterior 1st Ledge Sz 4-6

950502095 Sigma HP Anterior 1st Femoral Alignment Guide 950502096 Sigma HP Anterior 1st Femoral Resection Guide

Re-Cut Kit

 950501294
 Sigma HP Recut Blk +2mm

 950501295
 Sigma HP Recut Blk +3Deg

 950501296
 Sigma HP Recut Blk 2Deg V/V Left

 950501297
 Sigma HP Recut Blk 2Deg V/V Right

 950501394
 Sigma HP Recut Kit Reference Arm

 950501395
 Sigma HP Recut Kit Slotted Adapter

### Instrument Trays

#### General

950502800 HP Base Femur & Tibia 950502802 Sigma HP Spacer blocks

950502808 Sigma HP Patella & Insertion Instruments

950502840 Sigma HP Insertion Instruments

### Femoral Sizing & Resection

950502810 Sigma HP Classic Reference Femur Prep 950502809 Sigma HP RP-F Classic Reference Femur Prep

950502826 Sigma HP Macro Case 950502843 Sigma HP Micro Case

### Fixed Bearing Preparation & Trials

950502812 Sigma HP FB Tibial Prep

950502837 Sigma HP Standard Tibial Guides & Punches

950502835 Sigma HP FB PLI Insert Trials
950502813 Sigma HP Curved Insert Trials
950502814 Sigma HP Stabilized Insert Trials
950502827 Sigma HP Curved Plus Case
950502833 Sigma HP FB Micro 1.5 Trial Case
950502834 Sigma HP FB Macro Trial Case
950502853 Sigma HP FB Thick Insert Trials

#### Mobile Bearing Preparation & Trials

950502806 Sigma HP M.B.T. Tibia Prep
950502807 Sigma HP RP Insert Trial
950502832 Sigma HP Macro RP Insert Case
950502842 Sigma HP RP Micro Insert Case
950502852 Sigma HP RP Thick Insert Trials

### Femoral Trials

950502804 Sigma HP Femoral Trials 950502815 Sigma HP RP-F Trials

### Miscellaneous

950502841 Sigma HP Quick Kit FB Case
950502823 Sigma HP Quick Kit Base Case
950502824 Sigma HP Quick Kit M.B.T. Case
950502821 Sigma HP Upgrade #1 Case
950502825 Sigma HP Anterior First Case
950502830 Sigma HP Recut Kit Case

### Total and Unicompartmental Knee Prostheses

### Important

This Essential Product Information sheet does not include all of the information necessary for selection and use of a device. Please see full labeling for all necessary information.

### Indications

Total Knee Arthroplasty (TKA) and Unicompartmental Knee Replacement are intended to provide increased patient mobility and reduce pain by replacing the damaged knee joint articulation in patients where there is evidence of sufficient sound bone to seat and support the components. The Sigma C/R Porocoat Femoral Components are intended for cemented or cementless use as the femoral component of a Total Knee Replacement System. TKA is indicated for: a severely painful and/or disabled joint from osteoarthritis, traumatic arthritis, rheumatoid arthritis or a failed previous implant. Unicompartmental knee replacement is indicated in these conditions if only one side of the joint (medial or lateral) is affected.

### Contra-indications

TKA and Unicompartmental knee replacement are contraindicated in cases of: active local or systemic infection; loss of musculature, osteoporosis, neuromuscular compromise or vascular deficiency in the affected limb, rendering the procedure unjustifiable. Unicompartmental knee replacement is contraindicated in patients with over 30 degrees of fixed varus or valgus deformity.

## Warnings and Precautions

Components labeled for "Cemented Use Only" are to be implanted only with bone cement. The following conditions tend to adversely affect knee replacement implants: excessive patient weight, high levels of patient activity, likelihood of falls, poor bone stock, metabolic disorders, disabilities of other joints.

### Adverse Events

The following are the most frequent adverse events after knee arthroplasty: change in position of the components, loosening, tibial subsidence, bending, cracking, fracture, deformation or wear of one or more of the components, infection, tissue reaction to implant materials or wear debris; pain, dislocation, subluxation, flexion contracture, decreased range of motion, lengthening or shortening of leg caused by improper positioning, looseness or wear of components; fractures of the femur or tibia.



Fax: +44 (0)113 387 7890